NLP methods can aid historians in analyzing textual materials in greater volumes than manually feasible. Developing such methods poses substantial challenges though. First, acquiring large, annotated historical datasets is difficult, as only domain experts can reliably label them. Second, most available off-the-shelf NLP models are trained on modern language texts, rendering them significantly less effective when applied to historical corpora. This is particularly problematic for less well studied tasks, and for languages other than English. This paper addresses these challenges while focusing on the under-explored task of event extraction from a novel domain of historical texts. We introduce a new multilingual dataset in English, French, and Dutch composed of newspaper ads from the early modern colonial period reporting on enslaved people who liberated themselves from enslavement. We find that: 1) even with scarce annotated data, it is possible to achieve surprisingly good results by formulating the problem as an extractive QA task and leveraging existing datasets and models for modern languages; and 2) cross-lingual low-resource learning for historical languages is highly challenging, and machine translation of the historical datasets to the considered target languages is, in practice, often the best-performing solution.
Scanned historical maps in libraries and archives are valuable repositories of geographic data that often do not exist elsewhere. Despite the potential of machine learning tools like the Google Vision APIs for automatically transcribing text from these maps into machine-readable formats, they do not work well with large-sized images (e.g., high-resolution scanned documents), cannot infer the relation between the recognized text and other datasets, and are challenging to integrate with post-processing tools. This paper introduces the mapKurator system, an end-to-end system integrating machine learning models with a comprehensive data processing pipeline. mapKurator empowers automated extraction, post-processing, and linkage of text labels from large numbers of large-dimension historical map scans. The output data, comprising bounding polygons and recognized text, is in the standard GeoJSON format, making it easily modifiable within Geographic Information Systems (GIS). The proposed system allows users to quickly generate valuable data from large numbers of historical maps for in-depth analysis of the map content and, in turn, encourages map findability, accessibility, interoperability, and reusability (FAIR principles). We deployed the mapKurator system and enabled the processing of over 60,000 maps and over 100 million text/place names in the David Rumsey Historical Map collection. We also demonstrated a seamless integration of mapKurator with a collaborative web platform to enable accessing automated approaches for extracting and linking text labels from historical map scans and collective work to improve the results.
Purpose: The purpose of this article is to propose, based on a model of an interaction semantics, a certain understanding of the ''meaning'' of the exchanged characters within an interaction. Methodology: Based on a model of system interaction, I structure the model of interaction semantics similar to the semantics of a formal language: first, I identify adequate variables in my interaction model to assign values to, and second, I identify the interpretation function to provide meaning. Thereby I arrive at a model of interaction semantics which, in the sense of the late Ludwig Wittgenstein, can do without a 'mental' mapping from characters to concepts. Findings: The key findings are a better understanding of the tight relation between the informatical approach to model interactions and game theory; of the central 'chicken and egg' problem, any natural language has to solve, namely that to interact sensibly, we have to understand each other and to acquire a common understanding, we have to interact with each other, which I call the 'simultaneous interaction and understanding (SIAU)' problem; why ontologies are less 'semantic' then their proponents suggest; and how 'semantic' interoperability is to be achieved. Value: The main value of the proposed model of interaction semantics is that it could be applied in many different disciplines and therefore could serve as a basis for scientists of natural sciences and humanities as well as engineers to understand each other more easily talking about semantics, especially with the advent of cyber-physical systems.
Document-level event extraction is a long-standing challenging information retrieval problem involving a sequence of sub-tasks: entity extraction, event type judgment, and event type-specific multi-event extraction. However, addressing the problem as multiple learning tasks leads to increased model complexity. Also, existing methods insufficiently utilize the correlation of entities crossing different events, resulting in limited event extraction performance. This paper introduces a novel framework for document-level event extraction, incorporating a new data structure called token-event-role and a multi-channel argument role prediction module. The proposed data structure enables our model to uncover the primary role of tokens in multiple events, facilitating a more comprehensive understanding of event relationships. By leveraging the multi-channel prediction module, we transform entity and multi-event extraction into a single task of predicting token-event pairs, thereby reducing the overall parameter size and enhancing model efficiency. The results demonstrate that our approach outperforms the state-of-the-art method by 9.5 percentage points in terms of the F1 score, highlighting its superior performance in event extraction. Furthermore, an ablation study confirms the significant value of the proposed data structure in improving event extraction tasks, further validating its importance in enhancing the overall performance of the framework.
Isolated Sign Language Recognition (SLR) has mostly been applied on relatively large datasets containing signs executed slowly and clearly by a limited group of signers. In real-world scenarios, however, we are met with challenging visual conditions, coarticulated signing, small datasets, and the need for signer independent models. To tackle this difficult problem, we require a robust feature extractor to process the sign language videos. One could expect human pose estimators to be ideal candidates. However, due to a domain mismatch with their training sets and challenging poses in sign language, they lack robustness on sign language data and image based models often still outperform keypoint based models. Furthermore, whereas the common practice of transfer learning with image based models yields even higher accuracy, keypoint based models are typically trained from scratch on every SLR dataset. These factors limit their usefulness for SLR. From the existing literature, it is also not clear which, if any, pose estimator performs best for SLR. We compare the three most popular pose estimators for SLR: OpenPose, MMPose and MediaPipe. We show that through keypoint normalization, missing keypoint imputation, and learning a pose embedding, we can obtain significantly better results and enable transfer learning. We show that keypoint-based embeddings contain cross-lingual features: they can transfer between sign languages and achieve competitive performance even when fine-tuning only the classifier layer of an SLR model on a target sign language. We furthermore achieve better performance using fine-tuned transferred embeddings than models trained only on the target sign language. The application of these embeddings could prove particularly useful for low resource sign languages in the future.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
With the explosion of online news, personalized news recommendation becomes increasingly important for online news platforms to help their users find interesting information. Existing news recommendation methods achieve personalization by building accurate news representations from news content and user representations from their direct interactions with news (e.g., click), while ignoring the high-order relatedness between users and news. Here we propose a news recommendation method which can enhance the representation learning of users and news by modeling their relatedness in a graph setting. In our method, users and news are both viewed as nodes in a bipartite graph constructed from historical user click behaviors. For news representations, a transformer architecture is first exploited to build news semantic representations. Then we combine it with the information from neighbor news in the graph via a graph attention network. For user representations, we not only represent users from their historically clicked news, but also attentively incorporate the representations of their neighbor users in the graph. Improved performances on a large-scale real-world dataset validate the effectiveness of our proposed method.
Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.