亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Purpose: The purpose of this article is to propose, based on a model of an interaction semantics, a certain understanding of the ''meaning'' of the exchanged characters within an interaction. Methodology: Based on a model of system interaction, I structure the model of interaction semantics similar to the semantics of a formal language: first, I identify adequate variables in my interaction model to assign values to, and second, I identify the interpretation function to provide meaning. Thereby I arrive at a model of interaction semantics which, in the sense of the late Ludwig Wittgenstein, can do without a 'mental' mapping from characters to concepts. Findings: The key findings are a better understanding of the tight relation between the informatical approach to model interactions and game theory; of the central 'chicken and egg' problem, any natural language has to solve, namely that to interact sensibly, we have to understand each other and to acquire a common understanding, we have to interact with each other, which I call the 'simultaneous interaction and understanding (SIAU)' problem; why ontologies are less 'semantic' then their proponents suggest; and how 'semantic' interoperability is to be achieved. Value: The main value of the proposed model of interaction semantics is that it could be applied in many different disciplines and therefore could serve as a basis for scientists of natural sciences and humanities as well as engineers to understand each other more easily talking about semantics, especially with the advent of cyber-physical systems.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 吸引點 · 操作 · Subspace · 吸引域 ·
2023 年 8 月 25 日

The Koopman operator provides a linear perspective on non-linear dynamics by focusing on the evolution of observables in an invariant subspace. Observables of interest are typically linearly reconstructed from the Koopman eigenfunctions. Despite the broad use of Koopman operators over the past few years, there exist some misconceptions about the applicability of Koopman operators to dynamical systems with more than one fixed point. In this work, an explanation is provided for the mechanism of lifting for the Koopman operator of nonlinear systems with multiple attractors. Considering the example of the Duffing oscillator, we show that by exploiting the inherent symmetry between the basins of attraction, a linear reconstruction with three degrees of freedom in the Koopman observable space is sufficient to globally linearize the system.

The Bayesian inference approach is widely used to tackle inverse problems due to its versatile and natural ability to handle ill-posedness. However, it often faces challenges when dealing with situations involving continuous fields or large-resolution discrete representations (high-dimensional). Moreover, the prior distribution of unknown parameters is commonly difficult to be determined. In this study, an Operator Learning-based Generative Adversarial Network (OL-GAN) is proposed and integrated into the Bayesian inference framework to handle these issues. Unlike most Bayesian approaches, the distinctive characteristic of the proposed method is to learn the joint distribution of parameters and responses. By leveraging the trained generative model, the posteriors of the unknown parameters can theoretically be approximated by any sampling algorithm (e.g., Markov Chain Monte Carlo, MCMC) in a low-dimensional latent space shared by the components of the joint distribution. The latent space is typically a simple and easy-to-sample distribution (e.g., Gaussian, uniform), which significantly reduces the computational cost associated with the Bayesian inference while avoiding prior selection concerns. Furthermore, incorporating operator learning enables resolution-independent in the generator. Predictions can be obtained at desired coordinates, and inversions can be performed even if the observation data are misaligned with the training data. Finally, the effectiveness of the proposed method is validated through several numerical experiments.

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, the outputs of which consist of the solutions on a set of mesh nodes over the spatial domain. However, these simulations are often prohibitively costly to survey the input space. In this paper, we propose an efficient emulator that simultaneously predicts the outputs on a set of mesh nodes, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits a Gaussian process model in each. Most importantly, by revealing the underlying clustering structures, the proposed method can extract valuable flow physics present in the systems that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that exhibit coherent input-output relationships and possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

As quantum theory allows for information processing and computing tasks that otherwise are not possible with classical systems, there is a need and use of quantum Internet beyond existing network systems. At the same time, the realization of a desirably functional quantum Internet is hindered by fundamental and practical challenges such as high loss during transmission of quantum systems, decoherence due to interaction with the environment, fragility of quantum states, etc. We study the implications of these constraints by analyzing the limitations on the scaling and robustness of quantum Internet. Considering quantum networks, we present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes. Motivated by the power of abstraction in graph theory (in association with quantum information theory), we consider graph-theoretic quantifiers to assess network robustness and provide critical values of communication lines for viable communication over quantum Internet. In particular, we begin by discussing limitations on usefulness of isotropic states as device-independent quantum key repeaters which otherwise could be useful for device-independent quantum key distribution. We consider some quantum networks of practical interest, ranging from satellite-based networks connecting far-off spatial locations to currently available quantum processor architectures within computers, and analyze their robustness to perform quantum information processing tasks. Some of these tasks form primitives for delegated quantum computing, e.g., entanglement distribution and quantum teleportation. For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest such as constructing the network structure, finding the shortest path between a pair of end nodes, and optimizing the flow of resources at a node.

Neural dynamical systems with stable attractor structures, such as point attractors and continuous attractors, are hypothesized to underlie meaningful temporal behavior that requires working memory. However, working memory may not support useful learning signals necessary to adapt to changes in the temporal structure of the environment. We show that in addition to the continuous attractors that are widely implicated, periodic and quasi-periodic attractors can also support learning arbitrarily long temporal relationships. Unlike the continuous attractors that suffer from the fine-tuning problem, the less explored quasi-periodic attractors are uniquely qualified for learning to produce temporally structured behavior. Our theory has broad implications for the design of artificial learning systems and makes predictions about observable signatures of biological neural dynamics that can support temporal dependence learning and working memory. Based on our theory, we developed a new initialization scheme for artificial recurrent neural networks that outperforms standard methods for tasks that require learning temporal dynamics. Moreover, we propose a robust recurrent memory mechanism for integrating and maintaining head direction without a ring attractor.

We propose a general framework for solving forward and inverse problems constrained by partial differential equations, where we interpolate neural networks onto finite element spaces to represent the (partial) unknowns. The framework overcomes the challenges related to the imposition of boundary conditions, the choice of collocation points in physics-informed neural networks, and the integration of variational physics-informed neural networks. A numerical experiment set confirms the framework's capability of handling various forward and inverse problems. In particular, the trained neural network generalises well for smooth problems, beating finite element solutions by some orders of magnitude. We finally propose an effective one-loop solver with an initial data fitting step (to obtain a cheap initialisation) to solve inverse problems.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

In this article, we study the inconsistency of systems of $\min-\rightarrow$ fuzzy relational equations. We give analytical formulas for computing the Chebyshev distances $\nabla = \inf_{d \in \mathcal{D}} \Vert \beta - d \Vert$ associated to systems of $\min-\rightarrow$ fuzzy relational equations of the form $\Gamma \Box_{\rightarrow}^{\min} x = \beta$, where $\rightarrow$ is a residual implicator among the G\"odel implication $\rightarrow_G$, the Goguen implication $\rightarrow_{GG}$ or Lukasiewicz's implication $\rightarrow_L$ and $\mathcal{D}$ is the set of second members of consistent systems defined with the same matrix $\Gamma$. The main preliminary result that allows us to obtain these formulas is that the Chebyshev distance $\nabla$ is the lower bound of the solutions of a vector inequality, whatever the residual implicator used. Finally, we show that, in the case of the $\min-\rightarrow_{G}$ system, the Chebyshev distance $\nabla$ may be an infimum, while it is always a minimum for $\min-\rightarrow_{GG}$ and $\min-\rightarrow_{L}$ systems.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司