We propose a general framework for solving forward and inverse problems constrained by partial differential equations, where we interpolate neural networks onto finite element spaces to represent the (partial) unknowns. The framework overcomes the challenges related to the imposition of boundary conditions, the choice of collocation points in physics-informed neural networks, and the integration of variational physics-informed neural networks. A numerical experiment set confirms the framework's capability of handling various forward and inverse problems. In particular, the trained neural network generalises well for smooth problems, beating finite element solutions by some orders of magnitude. We finally propose an effective one-loop solver with an initial data fitting step (to obtain a cheap initialisation) to solve inverse problems.
This work focuses on the conservation of quantities such as Hamiltonians, mass, and momentum when solution fields of partial differential equations are approximated with nonlinear parametrizations such as deep networks. The proposed approach builds on Neural Galerkin schemes that are based on the Dirac--Frenkel variational principle to train nonlinear parametrizations sequentially in time. We first show that only adding constraints that aim to conserve quantities in continuous time can be insufficient because the nonlinear dependence on the parameters implies that even quantities that are linear in the solution fields become nonlinear in the parameters and thus are challenging to discretize in time. Instead, we propose Neural Galerkin schemes that compute at each time step an explicit embedding onto the manifold of nonlinearly parametrized solution fields to guarantee conservation of quantities. The embeddings can be combined with standard explicit and implicit time integration schemes. Numerical experiments demonstrate that the proposed approach conserves quantities up to machine precision.
The Reynolds equation, combined with the Elrod algorithm for including the effect of cavitation, resembles a nonlinear convection-diffusion-reaction (CDR) equation. Its solution by finite elements is prone to oscillations in convection-dominated regions, which are present whenever cavitation occurs. We propose a stabilized finite-element method that is based on the variational multiscale method and exploits the concept of orthogonal subgrid scales. We demonstrate that this approach only requires one additional term in the weak form to obtain a stable method that converges optimally when performing mesh refinement.
In this paper, we develop a multiphysics finite element method for solving the quasi-static thermo-poroelasticity model with nonlinear permeability. The model involves multiple physical processes such as deformation, pressure, diffusion and heat transfer. To reveal the multi-physical processes of deformation, diffusion and heat transfer, we reformulate the original model into a fluid coupled problem that is general Stokes equation coupled with two reaction-diffusion equations. Then, we prove the existence and uniqueness of weak solution for the original problem by the $B$-operator technique and by sequence approximation for the reformulated problem. As for the reformulated problem we propose a fully discrete finite element method which can use arbitrary finite element pairs to solve the displacement $\bu$ pressure $\tau $ and variable $\varpi,\varsigma$, and the backward Euler method for time discretization. Finally, we give the stability analysis of the above proposed method, also we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Numerical experiments show that the proposed method can achieve good results under different finite element pairs and are consistent with the theoretical analysis.
We introduce a method which provides accurate numerical solutions to fractional-in-time partial differential equations posed on $[0,T] \times \Omega$ with $\Omega \subset \mathbb{R}^d$ without the excessive memory requirements associated with the nonlocal fractional derivative operator. Our approach combines recent advances in the development and utilization of multivariate sparse spectral methods as well as fast methods for the computation of Gauss quadrature nodes with recursive non-classical methods for the Caputo fractional derivative of general fractional order $\alpha > 0$. An attractive feature of the method is that it has minimal theoretical overhead when using it on any domain $\Omega$ on which an orthogonal polynomial basis is already available. We discuss the memory requirements of the method, present several numerical experiments demonstrating the method's performance in solving time-fractional PDEs on intervals, triangles and disks and derive error bounds which suggest sensible convergence strategies. As an important model problem for this approach we consider a type of wave equation with time-fractional dampening related to acoustic waves in viscoelastic media with applications in the physics of medical ultrasound and outline future research steps required to use such methods for the reverse problem of image reconstruction from sensor data.
We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.
In this paper, we propose a multiphysics finite element method for a quasi-static thermo-poroelasticity model with a nonlinear convective transport term. To design some stable numerical methods and reveal the multi-physical processes of deformation, diffusion and heat, we introduce three new variables to reformulate the original model into a fluid coupled problem. Then, we introduce an Newton's iterative algorithm by replacing the convective transport term with $\nabla T^{i}\cdot(\bm{K}\nabla p^{i-1})$, $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i})$ and $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i-1})$, and apply the Banach fixed point theorem to prove the convergence of the proposed method. Then, we propose a multiphysics finite element method with Newton's iterative algorithm, which is equivalent to a stabilized method, can effectively overcome the numerical oscillation caused by the nonlinear thermal convection term. Also, we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Finally, we draw conclusions to summarize the main results of this paper.
We present a machine learning framework capable of consistently inferring mathematical expressions of the hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelasticity model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via PNAM is that (1) it is spanned by a set univariate basis that can be re-parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi-variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning-generated mathematical model also requires fewer arithmetic operations than the deep neural network counterparts during deployment. This latter attribute is crucial for scaling large-scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state-of-the-art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade-off between interpretability, accuracy, and precision of the learned symbolic hyperelasticity models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics-based knowledge.
We propose a finite element discretization for the steady, generalized Navier-Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.