The description complexity of a model is the length of the shortest formula that defines the model. We study the description complexity of unary structures in first-order logic FO, also drawing links to semantic complexity in the form of entropy. The class of unary structures provides, e.g., a simple way to represent tabular Boolean data sets as relational structures. We define structures with FO-formulas that are strictly linear in the size of the model as opposed to using the naive quadratic ones, and we use arguments based on formula size games to obtain related lower bounds for description complexity. For a typical structure the upper and lower bounds in fact match up to a sublinear term, leading to a precise asymptotic result on the expected description complexity of a randomly selected structure. We then give bounds on the relationship between Shannon entropy and description complexity. We extend this relationship also to Boltzmann entropy by establishing an asymptotic match between the two entropies. Despite the simplicity of unary structures, our arguments require the use of formula size games, Stirling's approximation and Chernoff bounds.
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
Deriving a priority vector from a pairwise comparison matrix (PCM) is a crucial step in the Analytical Hierarchy Process (AHP). Although there exists a priority vector that satisfies the conditions of order preservation (COP), the priority vectors obtained through existing prioritization methods frequently violate these conditions, resulting in numerous COP violations. To address this issue, this paper introduces a novel procedure to manage COP violations in AHP. Firstly, we prove that the index-exchangeability condition is both a necessary and sufficient condition for determining whether a priority vector satisfies COP. This enables the direct detection of COP violations, relying solely on the pairwise comparison preferences of decision-makers, rather than the prioritization methods utilized. Subsequently, we propose the Minimal Number of Violations and Deviations Method (MNVDM) model, which aims to derive a priority vector with the minimal number of COP violations. In particular, the MNVDM can obtain a violation-free priority vector when the PCM meets the index exchangeability conditions. Furthermore, an optimization model based on minimizing information loss is designed to ensure the COP by revising the preferences when the index-exchangeability conditions are violated. Finally, the feasibility and efficiency of the proposed models are validated through numerical examples and Monte Carlo simulation experiments. Our implementation is available at: //github.com/Tommytutu/COP.
Multimodal learning involves integrating information from various modalities to enhance learning and comprehension. We compare three modality fusion strategies in person identification and verification by processing two modalities: voice and face. In this paper, a one-dimensional convolutional neural network is employed for x-vector extraction from voice, while the pre-trained VGGFace2 network and transfer learning are utilized for face modality. In addition, gammatonegram is used as speech representation in engagement with the Darknet19 pre-trained network. The proposed systems are evaluated using the K-fold cross-validation technique on the 118 speakers of the test set of the VoxCeleb2 dataset. The comparative evaluations are done for single-modality and three proposed multimodal strategies in equal situations. Results demonstrate that the feature fusion strategy of gammatonegram and facial features achieves the highest performance, with an accuracy of 98.37% in the person identification task. However, concatenating facial features with the x-vector reaches 0.62% for EER in verification tasks.
To help MLOps engineers decide which operator to use in which deployment scenario, this study aims to empirically assess the accuracy vs latency trade-off of white-box (training-based) and black-box operators (non-training-based) and their combinations in an Edge AI setup. We perform inference experiments including 3 white-box (i.e., QAT, Pruning, Knowledge Distillation), 2 black-box (i.e., Partition, SPTQ), and their combined operators (i.e., Distilled SPTQ, SPTQ Partition) across 3 tiers (i.e., Mobile, Edge, Cloud) on 4 commonly-used Computer Vision and Natural Language Processing models to identify the effective strategies, considering the perspective of MLOps Engineers. Our Results indicate that the combination of Distillation and SPTQ operators (i.e., DSPTQ) should be preferred over non-hybrid operators when lower latency is required in the edge at small to medium accuracy drop. Among the non-hybrid operators, the Distilled operator is a better alternative in both mobile and edge tiers for lower latency performance at the cost of small to medium accuracy loss. Moreover, the operators involving distillation show lower latency in resource-constrained tiers (Mobile, Edge) compared to the operators involving Partitioning across Mobile and Edge tiers. For textual subject models, which have low input data size requirements, the Cloud tier is a better alternative for the deployment of operators than the Mobile, Edge, or Mobile-Edge tier (the latter being used for operators involving partitioning). In contrast, for image-based subject models, which have high input data size requirements, the Edge tier is a better alternative for operators than Mobile, Edge, or their combination.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.