亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate hypothesis testing in nonparametric additive models estimated using simplified smooth backfitting (Huang and Yu, Journal of Computational and Graphical Statistics, \textbf{28(2)}, 386--400, 2019). Simplified smooth backfitting achieves oracle properties under regularity conditions and provides closed-form expressions of the estimators that are useful for deriving asymptotic properties. We develop a generalized likelihood ratio (GLR) and a loss function (LF) based testing framework for inference. Under the null hypothesis, both the GLR and LF tests have asymptotically rescaled chi-squared distributions, and both exhibit the Wilks phenomenon, which means the scaling constants and degrees of freedom are independent of nuisance parameters. These tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing. Additionally, the bandwidths that are well-suited for model estimation may be useful for testing. We show that in additive models, the LF test is asymptotically more powerful than the GLR test. We use simulations to demonstrate the Wilks phenomenon and the power of these proposed GLR and LF tests, and a real example to illustrate their usefulness.

相關內容

Bayesian nonparametric mixture models are common for modeling complex data. While these models are well-suited for density estimation, their application for clustering has some limitations. Miller and Harrison (2014) proved posterior inconsistency in the number of clusters when the true number of clusters is finite for Dirichlet process and Pitman--Yor process mixture models. In this work, we extend this result to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-dimensional representations of them. The latter include the Dirichlet multinomial process and the recently proposed Pitman--Yor and normalized generalized gamma multinomial processes. We show that mixture models based on these processes are also inconsistent in the number of clusters and discuss possible solutions. Notably, we show that a post-processing algorithm introduced by Guha et al. (2021) for the Dirichlet process extends to more general models and provides a consistent method to estimate the number of components.

The training of high-dimensional regression models on comparably sparse data is an important yet complicated topic, especially when there are many more model parameters than observations in the data. From a Bayesian perspective, inference in such cases can be achieved with the help of shrinkage prior distributions, at least for generalized linear models. However, real-world data usually possess multilevel structures, such as repeated measurements or natural groupings of individuals, which existing shrinkage priors are not built to deal with. We generalize and extend one of these priors, the R2D2 prior by Zhang et al. (2020), to linear multilevel models leading to what we call the R2D2M2 prior. The proposed prior enables both local and global shrinkage of the model parameters. It comes with interpretable hyperparameters, which we show to be intrinsically related to vital properties of the prior, such as rates of concentration around the origin, tail behavior, and amount of shrinkage the prior exerts. We offer guidelines on how to select the prior's hyperparameters by deriving shrinkage factors and measuring the effective number of non-zero model coefficients. Hence, the user can readily evaluate and interpret the amount of shrinkage implied by a specific choice of hyperparameters. Finally, we perform extensive experiments on simulated and real data, showing that our inference procedure for the prior is well calibrated, has desirable global and local regularization properties and enables the reliable and interpretable estimation of much more complex Bayesian multilevel models than was previously possible.

Reliability-oriented sensitivity analysis aims at combining both reliability and sensitivity analyses by quantifying the influence of each input variable of a numerical model on a quantity of interest related to its failure. In particular, target sensitivity analysis focuses on the occurrence of the failure, and more precisely aims to determine which inputs are more likely to lead to the failure of the system. The Shapley effects are quantitative global sensitivity indices which are able to deal with correlated input variables. They have been recently adapted to the target sensitivity analysis framework. In this article, we investigate two importance-sampling-based estimation schemes of these indices which are more efficient than the existing ones when the failure probability is small. Moreover, an extension to the case where only an i.i.d. input/output N-sample distributed according to the importance sampling auxiliary distribution is proposed. This extension allows to estimate the Shapley effects only with a data set distributed according to the importance sampling auxiliary distribution stemming from a reliability analysis without additional calls to the numerical model. In addition, we study theoretically the absence of bias of some estimators as well as the benefit of importance sampling. We also provide numerical guidelines and finally, realistic test cases show the practical interest of the proposed methods.

Censored quantile regression (CQR) has become a valuable tool to study the heterogeneous association between a possibly censored outcome and a set of covariates, yet computation and statistical inference for CQR have remained a challenge for large-scale data with many covariates. In this paper, we focus on a smoothed martingale-based sequential estimating equations approach, to which scalable gradient-based algorithms can be applied. Theoretically, we provide a unified analysis of the smoothed sequential estimator and its penalized counterpart in increasing dimensions. When the covariate dimension grows with the sample size at a sublinear rate, we establish the uniform convergence rate (over a range of quantile indexes) and provide a rigorous justification for the validity of a multiplier bootstrap procedure for inference. In high-dimensional sparse settings, our results considerably improve the existing work on CQR by relaxing an exponential term of sparsity. We also demonstrate the advantage of the smoothed CQR over existing methods with both simulated experiments and data applications.

In randomized experiments and observational studies, weighting methods are often used to generalize and transport treatment effect estimates to a target population. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. However, these estimated multiplicative weights may not produce adequate covariate balance and can be highly variable, resulting in biased and unstable estimators, especially when there is limited covariate overlap across populations or treatment groups. To address these limitations, we propose a general weighting approach that weights each treatment group towards the target population in a single step. We present a framework and provide a justification for this one-step approach in terms of generic probability distributions. We show a formal connection between our method and inverse probability and inverse odds weighting. By construction, the proposed approach balances covariates and produces stable estimators. We show that our estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We demonstrate the performance of this approach using a simulation study and a randomized case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California.

A difficulty in MSE estimation occurs because we do not specify a full distribution for the survey weights. This obfuscates the use of fully parametric bootstrap procedures. To overcome this challenge, we develop a novel MSE estimator. We estimate the leading term in the MSE, which is the MSE of the best predictor (constructed with the true parameters), using the same simulated samples used to construct the basic predictor. We then exploit the asymptotic normal distribution of the parameter estimators to estimate the second term in the MSE, which reflects variability in the estimated parameters. We incorporate a correction for the bias of the estimator of the leading term without the use of computationally intensive double-bootstrap procedures. We further develop calibrated prediction intervals that rely less on normal theory than standard prediction intervals. We empirically demonstrate the validity of the proposed procedures through extensive simulation studies. We apply the methods to predict several functions of sheet and rill erosion for Iowa counties using data from a complex agricultural survey.

Hamiltonian Monte Carlo (HMC) is a widely used sampler for continuous probability distributions. In many cases, the underlying Hamiltonian dynamics exhibit a phenomenon of resonance which decreases the efficiency of the algorithm and makes it very sensitive to hyperparameter values. This issue can be tackled efficiently, either via the use of trajectory length randomization (RHMC) or via partial momentum refreshment. The second approach is connected to the kinetic Langevin diffusion, and has been mostly investigated through the use of Generalized HMC (GHMC). However, GHMC induces momentum flips upon rejections causing the sampler to backtrack and waste computational resources. In this work we focus on a recent algorithm bypassing this issue, named Metropolis Adjusted Langevin Trajectories (MALT). We build upon recent strategies for tuning the hyperparameters of RHMC which target a bound on the Effective Sample Size (ESS) and adapt it to MALT, thereby enabling the first user-friendly deployment of this algorithm. We construct a method to optimize a sharper bound on the ESS and reduce the estimator variance. Easily compatible with parallel implementation, the resultant Adaptive MALT algorithm is competitive in terms of ESS rate and hits useful tradeoffs in memory usage when compared to GHMC, RHMC and NUTS.

In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to auxiliary information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.

Deep neural networks have achieved impressive performance in a variety of tasks over the last decade, such as autonomous driving, face recognition, and medical diagnosis. However, prior works show that deep neural networks are easily manipulated into specific, attacker-decided behaviors in the inference stage by backdoor attacks which inject malicious small hidden triggers into model training, raising serious security threats. To determine the triggered neurons and protect against backdoor attacks, we exploit Shapley value and develop a new approach called Shapley Pruning (ShapPruning) that successfully mitigates backdoor attacks from models in a data-insufficient situation (1 image per class or even free of data). Considering the interaction between neurons, ShapPruning identifies the few infected neurons (under 1% of all neurons) and manages to protect the model's structure and accuracy after pruning as many infected neurons as possible. To accelerate ShapPruning, we further propose discarding threshold and $\epsilon$-greedy strategy to accelerate Shapley estimation, making it possible to repair poisoned models with only several minutes. Experiments demonstrate the effectiveness and robustness of our method against various attacks and tasks compared to existing methods.

In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.

北京阿比特科技有限公司