Autonomous vehicle refers to a vehicle capable of perceiving its surrounding environment and driving with little or no human driver input. The perception system is a fundamental component which enables the autonomous vehicle to collect data and extract relevant information from the environment to drive safely. Benefit from the recent advances in computer vision, the perception task can be achieved by using sensors, such as camera, LiDAR, radar, and ultrasonic sensor. This paper reviews publications on computer vision and autonomous driving that are published during the last ten years. In particular, we first investigate the development of autonomous driving systems and summarize these systems that are developed by the major automotive manufacturers from different countries. Second, we investigate the sensors and benchmark data sets that are commonly utilized for autonomous driving. Then, a comprehensive overview of computer vision applications for autonomous driving such as depth estimation, object detection, lane detection, and traffic sign recognition are discussed. Additionally, we review public opinions and concerns on autonomous vehicles. Based on the discussion, we analyze the current technological challenges that autonomous vehicles meet with. Finally, we present our insights and point out some promising directions for future research. This paper will help the reader to understand autonomous vehicles from the perspectives of academia and industry.
The ability to derive useful information by asking clarifying questions (ACQ) is an important element of real life collaboration on reasoning tasks, such as question answering (QA). Existing natural language ACQ challenges, however, evaluate generations based on word overlap rather than the value of the information itself. Word overlap is often an inappropriate metric for question generation since many different questions could be useful in a given situation, and a single question can be phrased many different ways. Instead, we propose evaluating questions pragmatically based on the value of the information they retrieve. Here we present a definition and framework for natural language pragmatic asking of clarifying questions (PACQ), the problem of generating questions that result in answers useful for a reasoning task. We also present fact-level masking (FLM), a procedure for converting natural language datasets into self-supervised PACQ datasets by omitting particular critical facts. Finally, we generate a PACQ dataset from the HotpotQA dataset using FLM and evaluate several zero-shot language models on it. Our experiments show that current zero-shot models struggle to ask questions that retrieve useful information, as compared to human annotators. These results demonstrate an opportunity to use FLM datasets and the PACQ framework to objectively evaluate and improve question generation and other language models.
Building simulation environments for developing and testing autonomous vehicles necessitates that the simulators accurately model the statistical realism of the real-world environment, including the interaction with other vehicles driven by human drivers. To address this requirement, an accurate human behavior model is essential to incorporate the diversity and consistency of human driving behavior. We propose a mathematical framework for designing a data-driven simulation model that simulates human driving behavior more realistically than the currently used physics-based simulation models. Experiments conducted using the NGSIM dataset validate our hypothesis regarding the necessity of considering the complexity, diversity, and consistency of human driving behavior when aiming to develop realistic simulators.
Autonomous driving and intelligent transportation applications have dramatically increased the demand for high-accuracy and low-latency localization services. While cellular networks are potentially capable of target detection and localization, achieving accurate and reliable positioning faces critical challenges. Particularly, the relatively small radar cross sections (RCS) of moving targets and the high complexity for measurement association give rise to weak echo signals and discrepancies in the measurements. To tackle this issue, we propose a novel approach for multi-target localization by leveraging the controllable signal reflection capabilities of intelligent reflecting surfaces (IRSs). Specifically, IRSs are strategically mounted on the targets (e.g., vehicles and robots), enabling effective association of multiple measurements and facilitating the localization process. We aim to minimize the maximum Cram\'er-Rao lower bound (CRLB) of targets by jointly optimizing the target association, the IRS phase shifts, and the dwell time. However, solving this CRLB optimization problem is non-trivial due to the non-convex objective function and closely coupled variables. For single-target localization, a simplified closed-form expression is presented for the case where base stations (BSs) can be deployed flexibly, and the optimal BS location is derived to provide a lower performance bound of the original problem ...
Accurate trajectory tracking control for quadrotors is essential for safe navigation in cluttered environments. However, this is challenging in agile flights due to nonlinear dynamics, complex aerodynamic effects, and actuation constraints. In this article, we empirically compare two state-of-the-art control frameworks: the nonlinear-model-predictive controller (NMPC) and the differential-flatness-based controller (DFBC), by tracking a wide variety of agile trajectories at speeds up to 20 m/s (i.e.,72 km/h). The comparisons are performed in both simulation and real-world environments to systematically evaluate both methods from the aspect of tracking accuracy, robustness, and computational efficiency. We show the superiority of NMPC in tracking dynamically infeasible trajectories, at the cost of higher computation time and risk of numerical convergence issues. For both methods, we also quantitatively study the effect of adding an inner-loop controller using the incremental nonlinear dynamic inversion (INDI) method, and the effect of adding an aerodynamic drag model. Our real-world experiments, performed in one of the world's largest motion capture systems, demonstrate more than 78% tracking error reduction of both NMPC and DFBC, indicating the necessity of using an inner-loop controller and aerodynamic drag model for agile trajectory tracking.
As the aging population increases and the shortage of healthcare workers increases, the need to examine other means for caring for the aging population increases. One such means is the use of humanoid robots to care for social, emotional, and physical wellbeing of the people above 65. Understanding skilled and long term care nursing home administrators' perspectives on humanoid robots in caregiving is crucial as their insights shape the implementation of robots and their potential impact on resident well-being and quality of life. This authors surveyed two hundred and sixty nine nursing homes executives to understand their perspectives on the use of humanoid robots in their nursing home facilities. The data was coded and results revealed that the executives were keen on exploring other avenues for care such as robotics that would enhance their nursing homes abilities to care for their residents. Qualitative analysis reveals diverse perspectives on integrating humanoid robots in nursing homes. While acknowledging benefits like improved engagement and staff support, concerns persist about costs, impacts on human interaction, and doubts about robot effectiveness. This highlights complex barriers financial, technical, and human and emphasizes the need for strategic implementation. It underscores the importance of thorough training, role clarity, and showcasing technology benefits to ensure efficiency and satisfaction among staff and residents.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.