No-regret learners seek to minimize the difference between the loss they cumulated through the actions they played, and the loss they would have cumulated in hindsight had they consistently modified their behavior according to some strategy transformation function. The size of the set of transformations considered by the learner determines a natural notion of rationality. As the set of transformations each learner considers grows, the strategies played by the learners recover more complex game-theoretic equilibria, including correlated equilibria in normal-form games and extensive-form correlated equilibria in extensive-form games. At the extreme, a no-swap-regret agent is one that minimizes regret against the set of all functions from the set of strategies to itself. While it is known that the no-swap-regret condition can be attained efficiently in nonsequential (normal-form) games, understanding what is the strongest notion of rationality that can be attained efficiently in the worst case in sequential (extensive-form) games is a longstanding open problem. In this paper we provide a positive result, by showing that it is possible, in any sequential game, to retain polynomial-time (in the game tree size) iterations while achieving sublinear regret with respect to all linear transformations of the mixed strategy space, a notion called no-linear-swap regret. This notion of hindsight rationality is as strong as no-swap-regret in nonsequential games, and stronger than no-trigger-regret in sequential games -- thereby proving the existence of a subset of extensive-form correlated equilibria robust to linear deviations, which we call linear-deviation correlated equilibria, that can be approached efficiently.
Neural Radiance Fields (NeRF) have recently emerged as a powerful method for image-based 3D reconstruction, but the lengthy per-scene optimization limits their practical usage, especially in resource-constrained settings. Existing approaches solve this issue by reducing the number of input views and regularizing the learned volumetric representation with either complex losses or additional inputs from other modalities. In this paper, we present KeyNeRF, a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays. Such rays are first selected at camera level by a view selection algorithm that promotes baseline diversity while guaranteeing scene coverage, then at pixel level by sampling from a probability distribution based on local image entropy. Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRF codebases.
Automatic verification of concurrent programs faces state explosion due to the exponential possible interleavings of its sequential components coupled with large or infinite state spaces. An alternative is deductive verification, where given a candidate invariant, we establish inductive invariance and show that any state satisfying the invariant is also safe. However, learning (inductive) program invariants is difficult. To this end, we propose a data-driven procedure to synthesize program invariants, where it is assumed that the program invariant is an expression that characterizes a (hopefully tight) over-approximation of the reachable program states. The main ideas of our approach are: (1) We treat a candidate invariant as a classifier separating states observed in (sampled) program traces from those speculated to be unreachable. (2) We develop an enumerative, template-free approach to learn such classifiers from positive and negative examples. At its core, our enumerative approach employs decision trees to generate expressions that do not over-fit to the observed states (and thus generalize). (3) We employ a runtime framework to monitor program executions that may refute the candidate invariant; every refutation triggers a revision of the candidate invariant. Our runtime framework can be viewed as an instance of statistical model checking, which gives us probabilistic guarantees on the candidate invariant. We also show that such in some cases, our counterexample-guided inductive synthesis approach converges (in probability) to an overapproximation of the reachable set of states. Our experimental results show that our framework excels in learning useful invariants using only a fraction of the set of reachable states for a wide variety of concurrent programs.
We address the challenges in estimating 3D human poses from multiple views under occlusion and with limited overlapping views. We approach multi-view, single-person 3D human pose reconstruction as a regression problem and propose a novel encoder-decoder Transformer architecture to estimate 3D poses from multi-view 2D pose sequences. The encoder refines 2D skeleton joints detected across different views and times, fusing multi-view and temporal information through global self-attention. We enhance the encoder by incorporating a geometry-biased attention mechanism, effectively leveraging geometric relationships between views. Additionally, we use detection scores provided by the 2D pose detector to further guide the encoder's attention based on the reliability of the 2D detections. The decoder subsequently regresses the 3D pose sequence from these refined tokens, using pre-defined queries for each joint. To enhance the generalization of our method to unseen scenes and improve resilience to missing joints, we implement strategies including scene centering, synthetic views, and token dropout. We conduct extensive experiments on three benchmark public datasets, Human3.6M, CMU Panoptic and Occlusion-Persons. Our results demonstrate the efficacy of our approach, particularly in occluded scenes and when few views are available, which are traditionally challenging scenarios for triangulation-based methods.
Many humanoid and multi-legged robots are controlled in positions rather than in torques, preventing direct control of contact forces, and hampering their ability to create multiple contacts to enhance their balance, such as placing a hand on a wall or a handrail. This paper introduces the SEIKO (Sequential Equilibrium Inverse Kinematic Optimization) pipeline, drawing inspiration from flexibility models used in serial elastic actuators to indirectly control contact forces on traditional position-controlled robots. SEIKO formulates whole-body retargeting from Cartesian commands and admittance control using two quadratic programs solved in real time. We validated our pipeline with experiments on the real, full-scale humanoid robot Talos in various multicontact scenarios, including pushing tasks, far-reaching tasks, stair climbing, and stepping on sloped surfaces. This work opens the possibility of stable, contact-rich behaviors while getting around many of the challenges of torque-controlled robots. Code and videos are available at //hucebot.github.io/seiko_controller_website/ .
In this paper, we present approximate distance and shortest-path oracles for fault-tolerant Euclidean spanners motivated by the routing problem in real-world road networks. An $f$-fault-tolerant Euclidean $t$-spanner for a set $V$ of $n$ points in $\mathbb{R}^d$ is a graph $G=(V,E)$ where, for any two points $p$ and $q$ in $V$ and a set $F$ of $f$ vertices of $V$, the distance between $p$ and $q$ in $G-F$ is at most $t$ times their Euclidean distance. Given an $f$-fault-tolerant Euclidean $t$-spanner $G$ with $O(n)$ edges and a constant $\varepsilon$, our data structure has size $O_{t,f}(n\log n)$, and this allows us to compute an $(1+\varepsilon)$-approximate distance in $G-F$ between $s$ and $s'$ can be computed in constant time for any two vertices $s$ and $s'$ and a set $F$ of $f$ failed vertices. Also, with a data structure of size $O_{t,f}(n\log n\log\log n)$, we can compute an $(1+\varepsilon)$-approximate shortest path in $G-F$ between $s$ and $s'$ in $O_{t,f}(\log^2 n\log\log n+\textsf{sol})$ time for any two vertices $s$ and $s'$ and a set $F$ of failed vertices, where $\textsf{sol}$ denotes the number of vertices in the returned path.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.