Speech and language models trained through self-supervised learning (SSL) demonstrate strong alignment with brain activity during speech and language perception. However, given their distinct training modalities, it remains unclear whether they correlate with the same neural aspects. We directly address this question by evaluating the brain prediction performance of two representative SSL models, Wav2Vec2.0 and GPT-2, designed for speech and language tasks. Our findings reveal that both models accurately predict speech responses in the auditory cortex, with a significant correlation between their brain predictions. Notably, shared speech contextual information between Wav2Vec2.0 and GPT-2 accounts for the majority of explained variance in brain activity, surpassing static semantic and lower-level acoustic-phonetic information. These results underscore the convergence of speech contextual representations in SSL models and their alignment with the neural network underlying speech perception, offering valuable insights into both SSL models and the neural basis of speech and language processing.
We study when low coordinate degree functions (LCDF) -- linear combinations of functions depending on small subsets of entries of a vector -- can hypothesis test between high-dimensional probability measures. These functions are a generalization, proposed in Hopkins' 2018 thesis but seldom studied since, of low degree polynomials (LDP), a class widely used in recent literature as a proxy for all efficient algorithms for tasks in statistics and optimization. Instead of the orthogonal polynomial decompositions used in LDP calculations, our analysis of LCDF is based on the Efron-Stein or ANOVA decomposition, making it much more broadly applicable. By way of illustration, we prove channel universality for the success of LCDF in testing for the presence of sufficiently "dilute" random signals through noisy channels: the efficacy of LCDF depends on the channel only through the scalar Fisher information for a class of channels including nearly arbitrary additive i.i.d. noise and nearly arbitrary exponential families. As applications, we extend lower bounds against LDP for spiked matrix and tensor models under additive Gaussian noise to lower bounds against LCDF under general noisy channels. We also give a simple and unified treatment of the effect of censoring models by erasing observations at random and of quantizing models by taking the sign of the observations. These results are the first computational lower bounds against any large class of algorithms for all of these models when the channel is not one of a few special cases, and thereby give the first substantial evidence for the universality of several statistical-to-computational gaps.
Acting is an important decisional function for autonomous robots. Acting relies on skills to implement and to model the activities it oversees: refinement, local recovery, temporal dispatching, external asynchronous events, and commands execution, all done online. While sitting between planning and the robotic platform, acting often relies on programming primitives and an interpreter which executes these skills. Following our experience in providing a formal framework to program the functional components of our robots, we propose a new language, to program the acting skills. This language maps unequivocally into a formal model which can then be used to check properties offline or execute the skills, or more precisely their formal equivalent, and perform runtime verification. We illustrate with a real example how we can program a survey mission for a drone in this new language, prove some formal properties on the program and directly execute the formal model on the drone to perform the mission.
Purpose: To investigate whether Fractal Dimension (FD)-based oculomics could be used for individual risk prediction by evaluating repeatability and robustness. Methods: We used two datasets: Caledonia, healthy adults imaged multiple times in quick succession for research (26 subjects, 39 eyes, 377 colour fundus images), and GRAPE, glaucoma patients with baseline and follow-up visits (106 subjects, 196 eyes, 392 images). Mean follow-up time was 18.3 months in GRAPE, thus it provides a pessimistic lower-bound as vasculature could change. FD was computed with DART and AutoMorph. Image quality was assessed with QuickQual, but no images were initially excluded. Pearson, Spearman, and Intraclass Correlation (ICC) were used for population-level repeatability. For individual-level repeatability, we introduce measurement noise parameter {\lambda} which is within-eye Standard Deviation (SD) of FD measurements in units of between-eyes SD. Results: In Caledonia, ICC was 0.8153 for DART and 0.5779 for AutoMorph, Pearson/Spearman correlation (first and last image) 0.7857/0.7824 for DART, and 0.3933/0.6253 for AutoMorph. In GRAPE, Pearson/Spearman correlation (first and next visit) was 0.7479/0.7474 for DART, and 0.7109/0.7208 for AutoMorph (all p<0.0001). Median {\lambda} in Caledonia without exclusions was 3.55\% for DART and 12.65\% for AutoMorph, and improved to up to 1.67\% and 6.64\% with quality-based exclusions, respectively. Quality exclusions primarily mitigated large outliers. Worst quality in an eye correlated strongly with {\lambda} (Pearson 0.5350-0.7550, depending on dataset and method, all p<0.0001). Conclusions: Repeatability was sufficient for individual-level predictions in heterogeneous populations. DART performed better on all metrics and might be able to detect small, longitudinal changes, highlighting the potential of robust methods.
Maximum entropy (Maxent) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, Maxent models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for Maxent models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical Maxent models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Maxent models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth Maxent models efficiently. For Maxent models with discrete probability distribution of $n$ elements built from samples, each containing $m$ features, the stepsize parameters estimation and iterations in our algorithms scale on the order of $O(mn)$ operations and can be trivially parallelized. Moreover, the strong $\ell_{1}$ convexity of the Kullback--Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the arts by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.
Active learning can improve the efficiency of training prediction models by identifying the most informative new labels to acquire. However, non-response to label requests can impact active learning's effectiveness in real-world contexts. We conceptualise this degradation by considering the type of non-response present in the data, demonstrating that biased non-response is particularly detrimental to model performance. We argue that biased non-response is likely in contexts where the labelling process, by nature, relies on user interactions. To mitigate the impact of biased non-response, we propose a cost-based correction to the sampling strategy--the Upper Confidence Bound of the Expected Utility (UCB-EU)--that can, plausibly, be applied to any active learning algorithm. Through experiments, we demonstrate that our method successfully reduces the harm from labelling non-response in many settings. However, we also characterise settings where the non-response bias in the annotations remains detrimental under UCB-EU for specific sampling methods and data generating processes. Finally, we evaluate our method on a real-world dataset from an e-commerce platform. We show that UCB-EU yields substantial performance improvements to conversion models that are trained on clicked impressions. Most generally, this research serves to both better conceptualise the interplay between types of non-response and model improvements via active learning, and to provide a practical, easy-to-implement correction that mitigates model degradation.
When does a machine learning model predict the future of individuals and when does it recite patterns that predate the individuals? In this work, we propose a distinction between these two pathways of prediction, supported by theoretical, empirical, and normative arguments. At the center of our proposal is a family of simple and efficient statistical tests, called backward baselines, that demonstrate if, and to what extent, a model recounts the past. Our statistical theory provides guidance for interpreting backward baselines, establishing equivalences between different baselines and familiar statistical concepts. Concretely, we derive a meaningful backward baseline for auditing a prediction system as a black box, given only background variables and the system's predictions. Empirically, we evaluate the framework on different prediction tasks derived from longitudinal panel surveys, demonstrating the ease and effectiveness of incorporating backward baselines into the practice of machine learning.
Language models (LMs) show promise as tools for communicating science to the general public by simplifying and summarizing complex language. Because models can be prompted to generate text for a specific audience (e.g., college-educated adults), LMs might be used to create multiple versions of plain language summaries for people with different familiarities of scientific topics. However, it is not clear what the benefits and pitfalls of adaptive plain language are. When is simplifying necessary, what are the costs in doing so, and do these costs differ for readers with different background knowledge? Through three within-subjects studies in which we surface summaries for different envisioned audiences to participants of different backgrounds, we found that while simpler text led to the best reading experience for readers with little to no familiarity in a topic, high familiarity readers tended to ignore certain details in overly plain summaries (e.g., study limitations). Our work provides methods and guidance on ways of adapting plain language summaries beyond the single "general" audience.
I show that a one-dimensional (1D) conditional generative adversarial network (cGAN) with an adversarial training architecture is capable of unpaired signal-to-signal ("sig2sig") translation. Using a simplified CycleGAN model with 1D layers and wider convolutional kernels, mirroring WaveGAN to reframe two-dimensional (2D) image generation as 1D audio generation, I show that recasting the 2D image-to-image translation task to a 1D signal-to-signal translation task with deep convolutional GANs is possible without substantial modification to the conventional U-Net model and adversarial architecture developed as CycleGAN. With this I show for a small tunable dataset that noisy test signals unseen by the 1D CycleGAN model and without paired training transform from the source domain to signals similar to paired test signals in the translated domain, especially in terms of frequency, and I quantify these differences in terms of correlation and error.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.