Neural networks are increasingly recognized as a powerful numerical solution technique for partial differential equations (PDEs) arising in diverse scientific computing domains, including quantum many-body physics. In the context of time-dependent PDEs, the dominant paradigm involves casting the approximate solution in terms of stochastic minimization of an objective function given by the norm of the PDE residual, viewed as a function of the neural network parameters. Recently, advancements have been made in the direction of an alternative approach which shares aspects of nonlinearly parametrized Galerkin methods and variational quantum Monte Carlo, especially for high-dimensional, time-dependent PDEs that extend beyond the usual scope of quantum physics. This paper is inspired by the potential of solving Hamilton-Jacobi-Bellman (HJB) PDEs using Neural Galerkin methods and commences the exploration of nonlinearly parametrized trial functions for which the evolution equations are analytically tractable. As a precursor to the Neural Galerkin scheme, we present trial functions with evolution equations that admit closed-form solutions, focusing on time-dependent HJB equations relevant to finance.
We consider nonlinear solvers for the incompressible, steady (or at a fixed time step for unsteady) Navier-Stokes equations in the setting where partial measurement data of the solution is available. The measurement data is incorporated/assimilated into the solution through a nudging term addition to the the Picard iteration that penalized the difference between the coarse mesh interpolants of the true solution and solver solution, analogous to how continuous data assimilation (CDA) is implemented for time dependent PDEs. This was considered in the paper [Li et al. {\it CMAME} 2023], and we extend the methodology by improving the analysis to be in the $L^2$ norm instead of a weighted $H^1$ norm where the weight depended on the coarse mesh width, and to the case of noisy measurement data. For noisy measurement data, we prove that the CDA-Picard method is stable and convergent, up to the size of the noise. Numerical tests illustrate the results, and show that a very good strategy when using noisy data is to use CDA-Picard to generate an initial guess for the classical Newton iteration.
The Kuznetsov equation is a classical wave model of acoustics that incorporates quadratic gradient nonlinearities. When its strong damping vanishes, it undergoes a singular behavior change, switching from a parabolic-like to a hyperbolic quasilinear evolution. In this work, we establish for the first time the optimal error bounds for its finite element approximation as well as a semi-implicit fully discrete approximation that are robust with respect to the vanishing damping parameter. The core of the new arguments lies in devising energy estimates directly for the error equation where one can more easily exploit the polynomial structure of the nonlinearities and compensate inverse estimates with smallness conditions on the error. Numerical experiments are included to illustrate the theoretical results.
Characterizing the solution sets in a problem by closedness under operations is recognized as one of the key aspects of algorithm development, especially in constraint satisfaction. An example from the Boolean satisfiability problem is that the solution set of a Horn conjunctive normal form (CNF) is closed under the minimum operation, and this property implies that minimizing a nonnegative linear function over a Horn CNF can be done in polynomial time. In this paper, we focus on the set of integer points (vectors) in a polyhedron, and study the relation between these sets and closedness under operations from the viewpoint of 2-decomposability. By adding further conditions to the 2-decomposable polyhedra, we show that important classes of sets of integer vectors in polyhedra are characterized by 2-decomposability and closedness under certain operations, and in some classes, by closedness under operations alone. The most prominent result we show is that the set of integer vectors in a unit-two-variable-per-inequality polyhedron can be characterized by closedness under the median and directed discrete midpoint operations, each of these operations was independently considered in constraint satisfaction and discrete convex analysis.
In this paper, we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on $2$-smooth Banach spaces $X$. The leading operator $A$ is assumed to generate a strongly continuous semigroup $S$ on $X$, and the focus is on non-parabolic problems. The main result concerns convergence of the uniform strong error $$E_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|_X^p\Big)^{1/p} \to 0\quad (k \to 0),$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$ for final time $T>0$. This generalises previous results to a larger class of admissible nonlinearities and noise, as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to $2$-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler pointwise strong error $$E_k := \bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|_X^p\bigg)^{1/p},$$ which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schr\"odinger equation, for which previous convergence results were not applicable.
This paper focuses on the construction of non-intrusive Scientific Machine Learning (SciML) Reduced-Order Models (ROMs) for nonlinear, chaotic plasma turbulence simulations. In particular, we propose using Operator Inference (OpInf) to build low-cost physics-based ROMs from data for such simulations. As a representative example, we focus on the Hasegawa-Wakatani (HW) equations used for modeling two-dimensional electrostatic drift-wave plasma turbulence. For a comprehensive perspective of the potential of OpInf to construct accurate ROMs for this model, we consider a setup for the HW equations that leads to the formation of complex, nonlinear, and self-driven dynamics, and perform two sets of experiments. We first use the data obtained via a direct numerical simulation of the HW equations starting from a specific initial condition and train OpInf ROMs for predictions beyond the training time horizon. In the second, more challenging set of experiments, we train ROMs using the same dataset as before but this time perform predictions for six other initial conditions. Our results show that the OpInf ROMs capture the important features of the turbulent dynamics and generalize to new and unseen initial conditions while reducing the evaluation time of the high-fidelity model by up to five orders of magnitude in single-core performance. In the broader context of fusion research, this shows that non-intrusive SciML ROMs have the potential to drastically accelerate numerical studies, which can ultimately enable tasks such as the design and real-time control of optimized fusion devices.
We are interested in generating surfaces with arbitrary roughness and forming patterns on the surfaces. Two methods are applied to construct rough surfaces. In the first method, some superposition of wave functions with random frequencies and angles of propagation are used to get periodic rough surfaces with analytic parametric equations. The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in the generation of pattern formation. Numerical experiments show that the patterns become irregular as the amplitude and frequency of the rough surface increase. For the sake of easy generalization to closed manifolds, we propose a second construction method for rough surfaces, which uses random nodal values and discretized heat filters. We provide numerical evidence that both surface {construction methods} yield comparable patterns to those {observed} in real-life animals.
Active reconfigurable intelligent surface (RIS) is a new RIS architecture that can reflect and amplify communication signals. It can provide enhanced performance gain compared to the conventional passive RIS systems that can only reflect the signals. On the other hand, the design problem of active RIS-aided systems is more challenging than the passive RIS-aided systems and its efficient algorithms are less studied. In this paper, we consider the sum rate maximization problem in the multiuser massive multiple-input single-output (MISO) downlink with the aid of a large-scale active RIS. Existing approaches for handling this problem usually resort to general optimization solvers and can be computationally prohibitive. We propose an efficient block successive upper bound minimization (BSUM) method, of which each step has a (semi) closed-form update. Thus, the proposed algorithm has an attractive low per-iteration complexity. By simulation, our proposed algorithm consumes much less computation than the existing approaches. In particular, when the MIMO and/or RIS sizes are large, our proposed algorithm can be orders-of-magnitude faster than existing approaches.
A numerical algorithm for regularization of the solution of the source problem for the diffusion-logistic model based on information about the process at fixed moments of time of integral type has been developed. The peculiarity of the problem under study is the discrete formulation in space and impossibility to apply classical algorithms for its numerical solution. The regularization of the problem is based on the application of A.N. Tikhonov's approach and a priori information about the source of the process. The problem was formulated in a variational formulation and solved by the global tensor optimization method. It is shown that in the case of noisy data regularization improves the accuracy of the reconstructed source.
Probably one of the most striking examples of the close connections between global optimization processes and statistical physics is the simulated annealing method, inspired by the famous Monte Carlo algorithm devised by Metropolis et al. in the middle of the last century. In this paper we show how the tools of linear kinetic theory allow to describe this gradient-free algorithm from the perspective of statistical physics and how convergence to the global minimum can be related to classical entropy inequalities. This analysis highlight the strong link between linear Boltzmann equations and stochastic optimization methods governed by Markov processes. Thanks to this formalism we can establish the connections between the simulated annealing process and the corresponding mean-field Langevin dynamics characterized by a stochastic gradient descent approach. Generalizations to other selection strategies in simulated annealing that avoid the acceptance-rejection dynamic are also provided.
High order schemes are known to be unstable in the presence of shock discontinuities or under-resolved solution features for nonlinear conservation laws. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi-discrete entropy inequality independently of discretization parameters. This work extends high order entropy stable schemes to the quasi-1D shallow water equations and the quasi-1D compressible Euler equations, which model one-dimensional flows through channels or nozzles with varying width. We introduce new non-symmetric entropy conservative finite volume fluxes for both sets of quasi-1D equations, as well as a generalization of the entropy conservation condition to non-symmetric fluxes. When combined with an entropy stable interface flux, the resulting schemes are high order accurate, conservative, and semi-discretely entropy stable. For the quasi-1D shallow water equations, the resulting schemes are also well-balanced.