Actionable Warning Identification (AWI) plays a pivotal role in improving the usability of static code analyzers. Currently, Machine Learning (ML)-based AWI approaches, which mainly learn an AWI classifier from labeled warnings, are notably common. However, these approaches still face the problem of restricted performance due to the direct reliance on a limited number of labeled warnings to develop a classifier. Very recently, Pre-Trained Models (PTMs), which have been trained through billions of text/code tokens and demonstrated substantial success applications on various code-related tasks, could potentially circumvent the above problem. Nevertheless, the performance of PTMs on AWI has not been systematically investigated, leaving a gap in understanding their pros and cons. In this paper, we are the first to explore the feasibility of applying various PTMs for AWI. By conducting the extensive evaluation on 10K+ SpotBugs warnings from 10 large-scale and open-source projects, we observe that all studied PTMs are consistently 9.85%~21.12% better than the state-of-the-art ML-based AWI approaches. Besides, we investigate the impact of three primary aspects (i.e., data preprocessing, model training, and model prediction) in the typical PTM-based AWI workflow. Further, we identify the reasons for current PTMs' underperformance on AWI. Based on our findings, we provide several practical guidelines to enhance PTM-based AWI in future work.
With the rise of Transformer models in NLP and CV domain, Multi-Head Attention has been proven to be a game-changer. However, its expensive computation poses challenges to the model throughput and efficiency, especially for the long sequence tasks. Exploiting the sparsity in attention has been proven to be an effective way to reduce computation. Nevertheless, prior works do not consider the various distributions among different heads and lack a systematic method to determine the threshold. To address these challenges, we propose Low-Precision Approximate Attention with Head-wise Trainable Threshold for Efficient Transformer (LATTE). LATTE employs a headwise threshold-based filter with the low-precision dot product and computation reuse mechanism to reduce the computation of MHA. Moreover, the trainable threshold is introduced to provide a systematic method for adjusting the thresholds and enable end-to-end optimization. Experimental results indicate LATTE can smoothly adapt to both NLP and CV tasks, offering significant computation savings with only a minor compromise in performance. Also, the trainable threshold is shown to be essential for the leverage between the performance and the computation. As a result, LATTE filters up to 85.16% keys with only a 0.87% accuracy drop in the CV task and 89.91% keys with a 0.86 perplexity increase in the NLP task.
Virtual Reality (VR) has emerged as a promising tool for enhancing social skills and emotional well-being in individuals with Autism Spectrum Disorder (ASD). Through a technical exploration, this study employs a multiplayer serious gaming environment within VR, engaging 34 individuals diagnosed with ASD and employing high-precision biosensors for a comprehensive view of the participants' arousal and responses during the VR sessions. Participants were subjected to a series of 3 virtual scenarios designed in collaboration with stakeholders and clinical experts to promote socio-cognitive skills and emotional regulation in a controlled and structured virtual environment. We combined the framework with wearable non-invasive sensors for bio-signal acquisition, focusing on the collection of heart rate variability, and respiratory patterns to monitor participants behaviors. Further, behavioral assessments were conducted using observation and semi-structured interviews, with the data analyzed in conjunction with physiological measures to identify correlations and explore digital-intervention efficacy. Preliminary analysis revealed significant correlations between physiological responses and behavioral outcomes, indicating the potential of physiological feedback to enhance VR-based interventions for ASD. The study demonstrated the feasibility of using real-time data to adapt virtual scenarios, suggesting a promising avenue to support personalized therapy. The integration of quantitative physiological feedback into digital platforms represents a forward step in the personalized intervention for ASD. By leveraging real-time data to adjust therapeutic content, this approach promises to enhance the efficacy and engagement of digital-based therapies.
With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: //github.com/wangxiao5791509/MultiModal_BigModels_Survey. This paper has been published by the journal Machine Intelligence Research (MIR), //link.springer.com/article/10.1007/s11633-022-1410-8, DOI: 10.1007/s11633-022-1410-8, vol. 20, no. 4, pp. 447-482, 2023.
The Directed Acyclic Transformer is a fast non-autoregressive (NAR) model that performs well in Neural Machine Translation. Two issues prevent its application to general Natural Language Generation (NLG) tasks: frequent Out-Of-Vocabulary (OOV) errors and the inability to faithfully generate entity names. We introduce Control-DAG, a constrained decoding algorithm for our Directed Acyclic T5 (DA-T5) model which offers lexical, vocabulary and length control. We show that Control-DAG significantly enhances DA-T5 on the Schema Guided Dialogue and the DART datasets, establishing strong NAR results for Task-Oriented Dialogue and Data-to-Text NLG.
Convolutional Neural Networks (CNNs) have demonstrated remarkable ability throughout the field of computer vision. However, CNN inference requires a large number of arithmetic operations, making them expensive to deploy in hardware. Current approaches alleviate this issue by developing hardware-supported, algorithmic processes to simplify spatial convolution functions. However, these methods still heavily rely on matrix multiplication, leading to significant computational overhead. To bridge the gap between hardware, algorithmic acceleration, and approximate matrix multiplication, we propose TabConv, a novel, table-based approximation for convolution to significantly reduce arithmetic operations during inference. Additionally, we introduce a priority masking technique based on cosine similarity to select layers for table-based approximation, thereby maintaining the model performance. We evaluate our approach on popular CNNs: ResNet-18, ResNet-34, and NetworkInNetwork (NIN). TabConv preserves over 93% of the original model's performance while reducing arithmetic operations by 36.5%, 25.8%, and 99.4% for ResNet-18 on CIFAR-10, CIFAR-100, and MNIST, respectively, 35.6% and 99.3% for ResNet-34 on CIFAR-10 and MNIST, and 98.9% for NIN on MNIST, achieving low-computation inference.
Large Vision-Language Models (LVLMs) have demonstrated proficiency in tackling a variety of visual-language tasks. However, current LVLMs suffer from misalignment between text and image modalities which causes three kinds of hallucination problems, i.e., object existence, object attribute, and object relationship. To tackle this issue, existing methods mainly utilize Reinforcement Learning (RL) to align modalities in LVLMs. However, they still suffer from three main limitations: (1) General feedback can not indicate the hallucination type contained in the response; (2) Sparse rewards only give the sequence-level reward for the whole response; and (3)Annotation cost is time-consuming and labor-intensive. To handle these limitations, we propose an innovative method to align modalities in LVLMs through Fine-Grained Artificial Intelligence Feedback (FGAIF), which mainly consists of three steps: AI-based Feedback Collection, Fine-grained Reward Model Training, and Reinforcement Learning with Fine-grained Reward. Specifically, We first utilize AI tools to predict the types of hallucination for each segment in the response and obtain a collection of fine-grained feedback. Then, based on the collected reward data, three specialized reward models are trained to produce dense rewards. Finally, a novel fine-grained feedback module is integrated into the Proximal Policy Optimization (PPO) algorithm. Extensive experiments are conducted on hallucination and general benchmarks, demonstrating the superior performance of our proposed method. Notably, compared with previous models trained with the RL-based aligning method, our proposed method is effective even with fewer parameters.
Large Language Models (LLMs) for code are rapidly evolving, with code editing emerging as a critical capability. We introduce CodeEditorBench, an evaluation framework designed to rigorously assess the performance of LLMs in code editing tasks, including debugging, translating, polishing, and requirement switching. Unlike existing benchmarks focusing solely on code generation, CodeEditorBench emphasizes real-world scenarios and practical aspects of software development. We curate diverse coding challenges and scenarios from five sources, covering various programming languages, complexity levels, and editing tasks. Evaluation of 19 LLMs reveals that closed-source models (particularly Gemini-Ultra and GPT-4), outperform open-source models in CodeEditorBench, highlighting differences in model performance based on problem types and prompt sensitivities. CodeEditorBench aims to catalyze advancements in LLMs by providing a robust platform for assessing code editing capabilities. We will release all prompts and datasets to enable the community to expand the dataset and benchmark emerging LLMs. By introducing CodeEditorBench, we contribute to the advancement of LLMs in code editing and provide a valuable resource for researchers and practitioners.
The Laplace-Beltrami operator (LBO) emerges from studying manifolds equipped with a Riemannian metric. It is often called the Swiss army knife of geometry processing as it allows to capture intrinsic shape information and gives rise to heat diffusion, geodesic distances, and a multitude of shape descriptors. It also plays a central role in geometric deep learning. In this work, we explore Finsler manifolds as a generalization of Riemannian manifolds. We revisit the Finsler heat equation and derive a Finsler heat kernel and a Finsler-Laplace-Beltrami Operator (FLBO): a novel theoretically justified anisotropic Laplace-Beltrami operator (ALBO). In experimental evaluations we demonstrate that the proposed FLBO is a valuable alternative to the traditional Riemannian-based LBO and ALBOs for spatial filtering and shape correspondence estimation. We hope that the proposed Finsler heat kernel and the FLBO will inspire further exploration of Finsler geometry in the computer vision community.
Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at //github.com/naver-ai/egtr .
Large Language Models (LLMs), such as ChatGPT, are increasingly sophisticated and exhibit capabilities closely resembling those of humans. A significant application of these LLMs is their use as chat agents, responding to human inquiries across various domains. While current LLMs proficiently answer general questions, they often fall short in complex diagnostic scenarios such as legal, medical, or other specialized consultations. These scenarios typically require Task-Oriented Dialogue (TOD), where an AI chat agent must proactively pose questions and guide users toward specific goals or task completion. Previous fine-tuning models have underperformed in TOD and the full potential of this capability in current LLMs has not yet been fully explored. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative approach that extends LLMs to more TOD scenarios. In addition to guiding users to complete tasks, DiagGPT can effectively manage the status of all topics throughout the dialogue development. This feature enhances user experience and offers a more flexible interaction in TOD. Our experiments demonstrate that DiagGPT exhibits outstanding performance in conducting TOD with users, showing its potential for practical applications in various fields.