亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Networked discrete dynamical systems are often used to model the spread of contagions and decision-making by agents in coordination games. Fixed points of such dynamical systems represent configurations to which the system converges. In the dissemination of undesirable contagions (such as rumors and misinformation), convergence to fixed points with a small number of affected nodes is a desirable goal. Motivated by such considerations, we formulate a novel optimization problem of finding a nontrivial fixed point of the system with the minimum number of affected nodes. We establish that, unless P = NP, there is no polynomial time algorithm for approximating a solution to this problem to within the factor n^1-\epsilon for any constant epsilon > 0. To cope with this computational intractability, we identify several special cases for which the problem can be solved efficiently. Further, we introduce an integer linear program to address the problem for networks of reasonable sizes. For solving the problem on larger networks, we propose a general heuristic framework along with greedy selection methods. Extensive experimental results on real-world networks demonstrate the effectiveness of the proposed heuristics.

相關內容

Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models such as Markov chains and ordinary differential equations (ODEs). In \emph{forward bisimulations}, each state in the quotient model represents an equivalence class and the dynamical evolution gives the overall sum of its members in the original model. Here we introduce generalized forward bisimulation (GFB) for dynamical systems over commutative monoids and develop a partition refinement algorithm to compute the coarsest one. When the monoid is $(\mathbb{R}, +)$, we recover %our framework recovers probabilistic bisimulation for Markov chains and more recent forward bisimulations for %systems of nonlinear ODEs. %ordinary differential equations. Using $(\mathbb{R}, \cdot)$ we get %When the monoid is $(\mathbb{R}, \cdot)$ we can obtain nonlinear reductions for discrete-time dynamical systems and ODEs %ordinary differential equations where each variable in the quotient model represents the product of original variables in the equivalence class. When the domain is a finite set such as the Booleans $\mathbb{B}$, we can apply GFB to Boolean networks (BN), a widely used dynamical model in computational biology. Using a prototype implementation of our minimization algorithm for GFB, we find disjunction- and conjunction-preserving reductions on 60 BN from two well-known repositories, and demonstrate the obtained analysis speed-ups. We also provide the biological interpretation of the reduction obtained for two selected BN, and we show how GFB enables the analysis of a large one that could not be analyzed otherwise. Using a randomized version of our algorithm we find product-preserving (therefore non-linear) reductions on 21 dynamical weighted networks from the literature that could not be handled by the exact algorithm.

Noiseless compressive sensing is a protocol that enables undersampling and later recovery of a signal without loss of information. This compression is possible because the signal is usually sufficiently sparse in a given basis. Currently, the algorithm offering the best tradeoff between compression rate, robustness, and speed for compressive sensing is the LASSO (l1-norm bias) algorithm. However, many studies have pointed out the possibility that the implementation of lp-norms biases, with p smaller than one, could give better performance while sacrificing convexity. In this work, we focus specifically on the extreme case of the l0-based reconstruction, a task that is complicated by the discontinuity of the loss. In the first part of the paper, we describe via statistical physics methods, and in particular the replica method, how the solutions to this optimization problem are arranged in a clustered structure. We observe two distinct regimes: one at low compression rate where the signal can be recovered exactly, and one at high compression rate where the signal cannot be recovered accurately. In the second part, we present two message-passing algorithms based on our first results for the l0-norm optimization problem. The proposed algorithms are able to recover the signal at compression rates higher than the ones achieved by LASSO while being computationally efficient.

Obtaining guarantees on the convergence of the minimizers of empirical risks to the ones of the true risk is a fundamental matter in statistical learning. Instead of deriving guarantees on the usual estimation error, the goal of this paper is to provide concentration inequalities on the distance between the sets of minimizers of the risks for a broad spectrum of estimation problems. In particular, the risks are defined on metric spaces through probability measures that are also supported on metric spaces. A particular attention will therefore be given to include unbounded spaces and non-convex cost functions that might also be unbounded. This work identifies a set of assumptions allowing to describe a regime that seem to govern the concentration in many estimation problems, where the empirical minimizers are stable. This stability can then be leveraged to prove parametric concentration rates in probability and in expectation. The assumptions are verified, and the bounds showcased, on a selection of estimation problems such as barycenters on metric space with positive or negative curvature, subspaces of covariance matrices, regression problems and entropic-Wasserstein barycenters.

We propose a new variant of Chubanov's method for solving the feasibility problem over the symmetric cone by extending Roos's method (2018) of solving the feasibility problem over the nonnegative orthant. The proposed method considers a feasibility problem associated with a norm induced by the maximum eigenvalue of an element and uses a rescaling focusing on the upper bound for the sum of eigenvalues of any feasible solution to the problem. Its computational bound is (i) equivalent to that of Roos's original method (2018) and superior to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is the nonnegative orthant, (ii) superior to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is a Cartesian product of second-order cones, (iii) equivalent to that of Louren\c{c}o et al.'s method (2019) when the symmetric cone is the simple positive semidefinite cone, and (iv) superior to that of Pena and Soheili's method (2017) for any simple symmetric cones under the feasibility assumption of the problem imposed in Pena and Soheili's method (2017). We also conduct numerical experiments that compare the performance of our method with existing methods by generating instances in three types: strongly (but ill-conditioned) feasible instances, weakly feasible instances, and infeasible instances. For any of these instances, the proposed method is rather more efficient than the existing methods in terms of accuracy and execution time.

On Bakhvalov-type mesh, uniform convergence analysis of finite element method for a 2-D singularly perturbed convection-diffusion problem with exponential layers is still an open problem. Previous attempts have been unsuccessful. The primary challenges are the width of the mesh subdomain in the layer adjacent to the transition point, the restriction of the Dirichlet boundary condition, and the structure of exponential layers. To address these challenges, a novel analysis technique is introduced for the first time, which takes full advantage of the characteristics of interpolation and the connection between the smooth function and the layer function on the boundary. Utilizing this technique in conjunction with a new interpolation featuring a simple structure, uniform convergence of optimal order k+1 under an energy norm can be proven for finite element method of any order k. Numerical experiments confirm our theoretical results.

The paper analyses properties of a large class of "path-based" Data Envelopment Analysis models through a unifying general scheme. The scheme includes the well-known oriented radial models, the hyperbolic distance function model, the directional distance function models, and even permits their generalisations. The modelling is not constrained to non-negative data and is flexible enough to accommodate variants of standard models over arbitrary data. Mathematical tools developed in the paper allow systematic analysis of the models from the point of view of ten desirable properties. It is shown that some of the properties are satisfied (resp., fail) for all models in the general scheme, while others have a more nuanced behaviour and must be assessed individually in each model. Our results can help researchers and practitioners navigate among the different models and apply the models to mixed data.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

北京阿比特科技有限公司