Jailbreak vulnerabilities in Large Language Models (LLMs), which exploit meticulously crafted prompts to elicit content that violates service guidelines, have captured the attention of research communities. While model owners can defend against individual jailbreak prompts through safety training strategies, this relatively passive approach struggles to handle the broader category of similar jailbreaks. To tackle this issue, we introduce FuzzLLM, an automated fuzzing framework designed to proactively test and discover jailbreak vulnerabilities in LLMs. We utilize templates to capture the structural integrity of a prompt and isolate key features of a jailbreak class as constraints. By integrating different base classes into powerful combo attacks and varying the elements of constraints and prohibited questions, FuzzLLM enables efficient testing with reduced manual effort. Extensive experiments demonstrate FuzzLLM's effectiveness and comprehensiveness in vulnerability discovery across various LLMs.
Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4x or almost 8x training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.
While LLMs have shown great success in understanding and generating text in traditional conversational settings, their potential for performing ill-defined complex tasks is largely under-studied. Indeed, we are yet to conduct comprehensive benchmarking studies with multiple LLMs that are exclusively focused on a complex task. However, conducting such benchmarking studies is challenging because of the large variations in LLMs' performance when different prompt types/styles are used and different degrees of detail are provided in the prompts. To address this issue, the paper proposes a general taxonomy that can be used to design prompts with specific properties in order to perform a wide range of complex tasks. This taxonomy will allow future benchmarking studies to report the specific categories of prompts used as part of the study, enabling meaningful comparisons across different studies. Also, by establishing a common standard through this taxonomy, researchers will be able to draw more accurate conclusions about LLMs' performance on a specific complex task.
Long term exposure to biased content in literature or media can significantly influence people's perceptions of reality, leading to the development of implicit biases that are difficult to detect and address (Gerbner 1998). In this study, we propose a novel method to analyze the differences in representation between two groups and use it examine the representation of African Americans and White Americans in books between 1850 to 2000 with the Google Books dataset (Goldberg and Orwant 2013). By developing better tools to understand differences in representation, we aim to contribute to the ongoing efforts to recognize and mitigate biases. To improve upon the more common phrase based (men, women, white, black, etc) methods to differentiate context (Tripodi et al. 2019, Lucy; Tadimeti, and Bamman 2022), we propose collecting a comprehensive list of historically significant figures and using their names to select relevant context. This novel approach offers a more accurate and nuanced method for detecting implicit biases through reducing the risk of selection bias. We create group representations for each decade and analyze them in an aligned semantic space (Hamilton, Leskovec, and Jurafsky 2016). We further support our results by assessing the time adjusted toxicity (Bassignana, Basile, and Patti 2018) in the context for each group and identifying the semantic axes (Lucy, Tadimeti, and Bamman 2022) that exhibit the most significant differences between the groups across decades. We support our method by showing that our proposed method can capture known socio political changes accurately and our findings indicate that while the relative number of African American names mentioned in books have increased over time, the context surrounding them remains more toxic than white Americans.
We proposed a new objective intelligibility measure (OIM), called the Gammachirp Envelope Similarity Index (GESI), which can predict the speech intelligibility (SI) of simulated hearing loss (HL) sounds for normal hearing (NH) listeners. GESI is an intrusive method that computes the SI metric using the gammachirp filterbank (GCFB), the modulation filterbank, and the extended cosine similarity measure. GESI can accept the level asymmetry of the reference and test sounds and reflect the HI listener's hearing level as it appears on the audiogram. A unique feature of GESI is its ability to incorporate an individual participant's listening condition into the SI prediction. We conducted four SI experiments on male and female speech sounds in both laboratory and crowdsourced remote environments. We then evaluated GESI and the conventional OIMs, STOI, ESTOI, MBSTOI, and HASPI, for their ability to predict mean and individual SI values with and without the use of simulated HL sounds. GESI outperformed the other OIMs in all evaluations. STOI, ESTOI, and MBSTOI did not predict SI at all, even when using the simulated HL sounds. HASPI did not predict the difference between the laboratory and remote experiments on male speech sounds and the individual SI values. GESI may provide a first step toward SI prediction for individual HI listeners whose HL is caused solely by peripheral dysfunction.
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks. Recent work suggests that patching LLMs against these attacks is possible: manual jailbreak attacks are human-readable but often limited and public, making them easy to block; adversarial attacks generate gibberish prompts that can be detected using perplexity-based filters. In this paper, we show that these solutions may be too optimistic. We propose an interpretable adversarial attack, \texttt{AutoDAN}, that combines the strengths of both types of attacks. It automatically generates attack prompts that bypass perplexity-based filters while maintaining a high attack success rate like manual jailbreak attacks. These prompts are interpretable and diverse, exhibiting strategies commonly used in manual jailbreak attacks, and transfer better than their non-readable counterparts when using limited training data or a single proxy model. We also customize \texttt{AutoDAN}'s objective to leak system prompts, another jailbreak application not addressed in the adversarial attack literature. %, demonstrating the versatility of the approach. We can also customize the objective of \texttt{AutoDAN} to leak system prompts, beyond the ability to elicit harmful content from the model, demonstrating the versatility of the approach. Our work provides a new way to red-team LLMs and to understand the mechanism of jailbreak attacks.
As language models become increasingly integrated into our digital lives, Personalized Text Generation (PTG) has emerged as a pivotal component with a wide range of applications. However, the bias inherent in user written text, often used for PTG model training, can inadvertently associate different levels of linguistic quality with users' protected attributes. The model can inherit the bias and perpetuate inequality in generating text w.r.t. users' protected attributes, leading to unfair treatment when serving users. In this work, we investigate fairness of PTG in the context of personalized explanation generation for recommendations. We first discuss the biases in generated explanations and their fairness implications. To promote fairness, we introduce a general framework to achieve measure-specific counterfactual fairness in explanation generation. Extensive experiments and human evaluations demonstrate the effectiveness of our method.
Code Large Language Models (Code LLMs) are being increasingly employed in real-life applications, so evaluating them is critical. While the general accuracy of Code LLMs on individual tasks has been extensively evaluated, their self-consistency across different tasks is overlooked. Intuitively, a trustworthy model should be self-consistent when generating natural language specifications for its own code and generating code for its own specifications. Failure to preserve self-consistency reveals a lack of understanding of the shared semantics underlying natural language and programming language, and therefore undermines the trustworthiness of a model. In this paper, we first formally define the self-consistency of Code LLMs and then design a framework, IdentityChain, which effectively and efficiently evaluates the self-consistency and general accuracy of a model at the same time. We study eleven Code LLMs and show that they fail to preserve self-consistency, which is indeed a distinct aspect from general accuracy. Furthermore, we show that IdentityChain can be used as a model debugging tool to expose weaknesses of Code LLMs by demonstrating three major weaknesses that we identify in current models using IdentityChain. Our code is available at //github.com/marcusm117/IdentityChain.
We present an implementation of a Web3 platform that leverages the Groth16 Zero-Knowledge Proof schema to verify the validity of questionnaire results within Smart Contracts. Our approach ensures that the answer key of the questionnaire remains undisclosed throughout the verification process, while ensuring that the evaluation is done fairly. To accomplish this, users respond to a series of questions, and their answers are encoded and securely transmitted to a hidden backend. The backend then performs an evaluation of the user's answers, generating the overall result of the questionnaire. Additionally, it generates a Zero-Knowledge Proof, attesting that the answers were appropriately evaluated against a valid set of constraints. Next, the user submits their result along with the proof to a Smart Contract, which verifies their validity and issues a non-fungible token (NFT) as an attestation of the user's test result. In this research, we implemented the Zero-Knowledge functionality using Circom 2 and deployed the Smart Contract using Solidity, thereby showcasing a practical and secure solution for questionnaire validity verification in the context of Smart Contracts.
Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models with elegant solution-finding procedures and constant memory footprint. However, despite several attempts, these methods are heavily constrained by model inefficiency and optimization instability. Furthermore, fair benchmarking across relevant methods for vision tasks is missing. In this work, we revisit the line of implicit models and trace them back to the original weight-tied models. Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants. Through the lens of these simple-yet-clean weight-tied models, we further study the fundamental limits in the model capacity of such models and propose the use of distinct sparse masks to improve the model capacity. Finally, for practitioners, we offer design guidelines regarding the depth, width, and sparsity selection for weight-tied models, and demonstrate the generalizability of our insights to other learning paradigms.
Neural Radiance Fields (NeRF) is a novel implicit 3D reconstruction method that shows immense potential and has been gaining increasing attention. It enables the reconstruction of 3D scenes solely from a set of photographs. However, its real-time rendering capability, especially for interactive real-time rendering of large-scale scenes, still has significant limitations. To address these challenges, in this paper, we propose a novel neural rendering system called UE4-NeRF, specifically designed for real-time rendering of large-scale scenes. We partitioned each large scene into different sub-NeRFs. In order to represent the partitioned independent scene, we initialize polygonal meshes by constructing multiple regular octahedra within the scene and the vertices of the polygonal faces are continuously optimized during the training process. Drawing inspiration from Level of Detail (LOD) techniques, we trained meshes of varying levels of detail for different observation levels. Our approach combines with the rasterization pipeline in Unreal Engine 4 (UE4), achieving real-time rendering of large-scale scenes at 4K resolution with a frame rate of up to 43 FPS. Rendering within UE4 also facilitates scene editing in subsequent stages. Furthermore, through experiments, we have demonstrated that our method achieves rendering quality comparable to state-of-the-art approaches. Project page: //jamchaos.github.io/UE4-NeRF/.