In this paper we deal with a second order evolution inclusion involving a multivalued term generated by a Clarke subdifferential of a locally Lipschitz potential. For this problem we construct a double step time-semidiscrete approximation, known as the Rothe scheme. We study a sequence of solutions of the semidiscrete approximate problems and provide its weak convergence to a limit element that is a solution of the original problem.
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at //github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
In this paper, we use the Bayesian inversion approach to study the data assimilation problem for a family of tumor growth models described by porous-medium type equations. The models contain uncertain parameters and are indexed by a physical parameter $m$, which characterizes the constitutive relation between density and pressure. Based on these models, we employ the Bayesian inversion framework to infer parametric and nonparametric unknowns that affect tumor growth from noisy observations of tumor cell density. We establish the well-posedness and the stability theories for the Bayesian inversion problem and further prove the convergence of the posterior distribution in the so-called incompressible limit, $m \rightarrow \infty$. Since the posterior distribution across the index regime $m\in[2,\infty)$ can thus be treated in a unified manner, such theoretical results also guide the design of the numerical inference for the unknown. We propose a generic computational framework for such inverse problems, which consists of a typical sampling algorithm and an asymptotic preserving solver for the forward problem. With extensive numerical tests, we demonstrate that the proposed method achieves satisfactory accuracy in the Bayesian inference of the tumor growth models, which is uniform with respect to the constitutive relation.
This paper considers the problem of manifold functional multiple regression with functional response, time--varying scalar regressors, and functional error term displaying Long Range Dependence (LRD) in time. Specifically, the error term is given by a manifold multifractionally integrated functional time series (see, e.g., Ovalle--Mu\~noz \& Ruiz--Medina, 2024)). The manifold is defined by a connected and compact two--point homogeneous space. The functional regression parameters have support in the manifold. The Generalized Least--Squares (GLS) estimator of the vector functional regression parameter is computed, and its asymptotic properties are analyzed under a totally specified and misspecified model scenario. A multiscale residual correlation analysis in the simulation study undertaken illustrates the empirical distributional properties of the errors at different spherical resolution levels.
We present a study on asymptotically compatible Galerkin discretizations for a class of parametrized nonlinear variational problems. The abstract analytical framework is based on variational convergence, or Gamma-convergence. We demonstrate the broad applicability of the theoretical framework by developing asymptotically compatible finite element discretizations of some representative nonlinear nonlocal variational problems on a bounded domain. These include nonlocal nonlinear problems with classically-defined, local boundary constraints through heterogeneous localization at the boundary, as well as nonlocal problems posed on parameter-dependent domains.
In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
We introduce a novel continual learning method based on multifidelity deep neural networks. This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset, limiting catastrophic forgetting. On its own the multifidelity continual learning method shows robust results that limit forgetting across several datasets. Additionally, we show that the multifidelity method can be combined with existing continual learning methods, including replay and memory aware synapses, to further limit catastrophic forgetting. The proposed continual learning method is especially suited for physical problems where the data satisfy the same physical laws on each domain, or for physics-informed neural networks, because in these cases we expect there to be a strong correlation between the output of the previous model and the model on the current training domain.
We propose a novel neural network architecture based on conformer transducer that adds contextual information flow to the ASR systems. Our method improves the accuracy of recognizing uncommon words while not harming the word error rate of regular words. We explore the uncommon words accuracy improvement when we use the new model and/or shallow fusion with context language model. We found that combination of both provides cumulative gain in uncommon words recognition accuracy.
We present a generic framework for gradient reconstruction schemes on unstructured meshes using the notion of a dyadic sum-vector product. The proposed formulation reconstructs centroidal gradients of a scalar from its directional derivatives along specific directions in a suitably defined neighbourhood. We show that existing gradient reconstruction schemes can be encompassed within this framework by a suitable choice of the geometric vectors that define the dyadic sum tensor. The proposed framework also allows us to re-interpret certain hybrid schemes, which might not be derivable through traditional routes. Additionally, a generalization of flexible gradient schemes is proposed that can be employed to enhance the robustness of consistent gradient schemes without compromising on the accuracy of the computed gradients.
In this paper, we combine the Smolyak technique for multi-dimensional interpolation with the Filon-Clenshaw-Curtis (FCC) rule for one-dimensional oscillatory integration, to obtain a new Filon-Clenshaw-Curtis-Smolyak (FCCS) rule for oscillatory integrals with linear phase over the $d-$dimensional cube $[-1,1]^d$. By combining stability and convergence estimates for the FCC rule with error estimates for the Smolyak interpolation operator, we obtain an error estimate for the FCCS rule, consisting of the product of a Smolyak-type error estimate multiplied by a term that decreases with $\mathcal{O}(k^{-\tilde{d}})$, where $k$ is the wavenumber and $\tilde{d}$ is the number of oscillatory dimensions. If all dimensions are oscillatory, a higher negative power of $k$ appears in the estimate. As an application, we consider the forward problem of uncertainty quantification (UQ) for a one-space-dimensional Helmholtz problem with wavenumber $k$ and a random heterogeneous refractive index, depending in an affine way on $d$ i.i.d. uniform random variables. After applying a classical hybrid numerical-asymptotic approximation, expectations of functionals of the solution of this problem can be formulated as a sum of oscillatory integrals over $[-1,1]^d$, which we compute using the FCCS rule. We give numerical results for the FCCS rule and the UQ algorithm showing that accuracy improves when both $k$ and the order of the rule increase. We also give results for dimension-adaptive sparse grid FCCS quadrature showing its efficiency as dimension increases.