We present the first extensive measurement of the privacy properties of the advertising systems used by privacy-focused search engines. We propose an automated methodology to study the impact of clicking on search ads on three popular private search engines which have advertising-based business models: StartPage, Qwant, and DuckDuckGo, and we compare them to two dominant data-harvesting ones: Google and Bing. We investigate the possibility of third parties tracking users when clicking on ads by analyzing first-party storage, redirection domain paths, and requests sent before, when, and after the clicks. Our results show that privacy-focused search engines fail to protect users' privacy when clicking ads. Users' requests are sent through redirectors on 4% of ad clicks on Bing, 86% of ad clicks on Qwant, and 100% of ad clicks on Google, DuckDuckGo, and StartPage. Even worse, advertising systems collude with advertisers across all search engines by passing unique IDs to advertisers in most ad clicks. These IDs allow redirectors to aggregate users' activity on ads' destination websites in addition to the activity they record when users are redirected through them. Overall, we observe that both privacy-focused and traditional search engines engage in privacy-harming behaviors allowing cross-site tracking, even in privacy-enhanced browsers.
The detection of malicious deepfakes is a constantly evolving problem that requires continuous monitoring of detectors to ensure they can detect image manipulations generated by the latest emerging models. In this paper, we investigate the vulnerability of single-image deepfake detectors to black-box attacks created by the newest generation of generative methods, namely Denoising Diffusion Models (DDMs). Our experiments are run on FaceForensics++, a widely used deepfake benchmark consisting of manipulated images generated with various techniques for face identity swapping and face reenactment. Attacks are crafted through guided reconstruction of existing deepfakes with a proposed DDM approach for face restoration. Our findings indicate that employing just a single denoising diffusion step in the reconstruction process of a deepfake can significantly reduce the likelihood of detection, all without introducing any perceptible image modifications. While training detectors using attack examples demonstrated some effectiveness, it was observed that discriminators trained on fully diffusion-based deepfakes exhibited limited generalizability when presented with our attacks.
In recent times, significant advancements have been made in delving into the optimization landscape of policy gradient methods for achieving optimal control in linear time-invariant (LTI) systems. Compared with state-feedback control, output-feedback control is more prevalent since the underlying state of the system may not be fully observed in many practical settings. This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback (SOF) control in discrete-time LTI systems subject to quadratic cost. We begin by establishing crucial properties of the SOF cost, encompassing coercivity, L-smoothness, and M-Lipschitz continuous Hessian. Despite the absence of convexity, we leverage these properties to derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods, including the vanilla policy gradient method, the natural policy gradient method, and the Gauss-Newton method. Moreover, we provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when initialized near such minima. The paper concludes by presenting numerical examples that validate our theoretical findings. These results not only characterize the performance of gradient descent for optimizing the SOF problem but also provide insights into the effectiveness of general policy gradient methods within the realm of reinforcement learning.
This paper investigates efficient deep neural networks (DNNs) to replace dense unstructured weight matrices with structured ones that possess desired properties. The challenge arises because the optimal weight matrix structure in popular neural network models is obscure in most cases and may vary from layer to layer even in the same network. Prior structured matrices proposed for efficient DNNs were mostly hand-crafted without a generalized framework to systematically learn them. To address this issue, we propose a generalized and differentiable framework to learn efficient structures of weight matrices by gradient descent. We first define a new class of structured matrices that covers a wide range of structured matrices in the literature by adjusting the structural parameters. Then, the frequency-domain differentiable parameterization scheme based on the Gaussian-Dirichlet kernel is adopted to learn the structural parameters by proximal gradient descent. Finally, we introduce an effective initialization method for the proposed scheme. Our method learns efficient DNNs with structured matrices, achieving lower complexity and/or higher performance than prior approaches that employ low-rank, block-sparse, or block-low-rank matrices.
Narrative understanding involves capturing the author's cognitive processes, providing insights into their knowledge, intentions, beliefs, and desires. Although large language models (LLMs) excel in generating grammatically coherent text, their ability to comprehend the author's thoughts remains uncertain. This limitation hinders the practical applications of narrative understanding. In this paper, we conduct a comprehensive survey of narrative understanding tasks, thoroughly examining their key features, definitions, taxonomy, associated datasets, training objectives, evaluation metrics, and limitations. Furthermore, we explore the potential of expanding the capabilities of modularized LLMs to address novel narrative understanding tasks. By framing narrative understanding as the retrieval of the author's imaginative cues that outline the narrative structure, our study introduces a fresh perspective on enhancing narrative comprehension.
The analysis of configurable systems, i.e., systems those behaviors depend on parameters or support various features, is challenging due to the exponential blowup arising in the number of configuration options. This volume contains the post-proceedings of TiCSA 2023, the first workshop on Trends in Configurable Systems Analysis, where current challenges and solutions in configurable systems analysis were presented and discussed.
Learning controllers with offline data in decision-making systems is an essential area of research due to its potential to reduce the risk of applications in real-world systems. However, in responsibility-sensitive settings such as healthcare, decision accountability is of paramount importance, yet has not been adequately addressed by the literature. This paper introduces the Accountable Offline Controller (AOC) that employs the offline dataset as the Decision Corpus and performs accountable control based on a tailored selection of examples, referred to as the Corpus Subset. AOC operates effectively in low-data scenarios, can be extended to the strictly offline imitation setting, and displays qualities of both conservation and adaptability. We assess AOC's performance in both simulated and real-world healthcare scenarios, emphasizing its capability to manage offline control tasks with high levels of performance while maintaining accountability.
Supervised training of deep neural networks on pairs of clean image and noisy measurement achieves state-of-the-art performance for many image reconstruction tasks, but such training pairs are difficult to collect. Self-supervised methods enable training based on noisy measurements only, without clean images. In this work, we investigate the cost of self-supervised training in terms of sample complexity for a class of self-supervised methods that enable the computation of unbiased estimates of gradients of the supervised loss, including noise2noise methods. We analytically show that a model trained with such self-supervised training is as good as the same model trained in a supervised fashion, but self-supervised training requires more examples than supervised training. We then study self-supervised denoising and accelerated MRI empirically and characterize the cost of self-supervised training in terms of the number of additional samples required, and find that the performance gap between self-supervised and supervised training vanishes as a function of the training examples, at a problem-dependent rate, as predicted by our theory.
Human action recognition from skeletal data is an important and active area of research in which the state of the art has not yet achieved near-perfect accuracy on many well-known datasets. In this paper, we introduce the Distribution of Action Movements Descriptor, a novel action descriptor based on the distribution of the directions of the motions of the joints between frames, over the set of all possible motions in the dataset. The descriptor is computed as a normalized histogram over a set of representative directions of the joints, which are in turn obtained via clustering. While the descriptor is global in the sense that it represents the overall distribution of movement directions of an action, it is able to partially retain its temporal structure by applying a windowing scheme. The descriptor, together with a standard classifier, outperforms several state-of-the-art techniques on many well-known datasets.
Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.