Supervised training of deep neural networks on pairs of clean image and noisy measurement achieves state-of-the-art performance for many image reconstruction tasks, but such training pairs are difficult to collect. Self-supervised methods enable training based on noisy measurements only, without clean images. In this work, we investigate the cost of self-supervised training in terms of sample complexity for a class of self-supervised methods that enable the computation of unbiased estimates of gradients of the supervised loss, including noise2noise methods. We analytically show that a model trained with such self-supervised training is as good as the same model trained in a supervised fashion, but self-supervised training requires more examples than supervised training. We then study self-supervised denoising and accelerated MRI empirically and characterize the cost of self-supervised training in terms of the number of additional samples required, and find that the performance gap between self-supervised and supervised training vanishes as a function of the training examples, at a problem-dependent rate, as predicted by our theory.
Handwriting recognition is a key technology for accessing the content of old manuscripts, helping to preserve cultural heritage. Deep learning shows an impressive performance in solving this task. However, to achieve its full potential, it requires a large amount of labeled data, which is difficult to obtain for ancient languages and scripts. Often, a trade-off has to be made between ground truth quantity and quality, as is the case for the recently introduced Bullinger database. It contains an impressive amount of over a hundred thousand labeled text line images of mostly premodern German and Latin texts that were obtained by automatically aligning existing page-level transcriptions with text line images. However, the alignment process introduces systematic errors, such as wrongly hyphenated words. In this paper, we investigate the impact of such errors on training and evaluation and suggest means to detect and correct typical alignment errors.
The learning dynamics of deep neural networks are not well understood. The information bottleneck (IB) theory proclaimed separate fitting and compression phases. But they have since been heavily debated. We comprehensively analyze the learning dynamics by investigating a layer's reconstruction ability of the input and prediction performance based on the evolution of parameters during training. We empirically show the existence of three phases using common datasets and architectures such as ResNet and VGG: (i) near constant reconstruction loss, (ii) decrease, and (iii) increase. We also derive an empirically grounded data model and prove the existence of phases for single-layer networks. Technically, our approach leverages classical complexity analysis. It differs from IB by relying on measuring reconstruction loss rather than information theoretic measures to relate information of intermediate layers and inputs. Our work implies a new best practice for transfer learning: We show empirically that the pre-training of a classifier should stop well before its performance is optimal.
The representations of the activation space of deep neural networks (DNNs) are widely utilized for tasks like natural language processing, anomaly detection and speech recognition. Due to the diverse nature of these tasks and the large size of DNNs, an efficient and task-independent representation of activations becomes crucial. Empirical p-values have been used to quantify the relative strength of an observed node activation compared to activations created by already-known inputs. Nonetheless, keeping raw data for these calculations increases memory resource consumption and raises privacy concerns. To this end, we propose a model-agnostic framework for creating representations of activations in DNNs using node-specific histograms to compute p-values of observed activations without retaining already-known inputs. Our proposed approach demonstrates promising potential when validated with multiple network architectures across various downstream tasks and compared with the kernel density estimates and brute-force empirical baselines. In addition, the framework reduces memory usage by 30% with up to 4 times faster p-value computing time while maintaining state of-the-art detection power in downstream tasks such as the detection of adversarial attacks and synthesized content. Moreover, as we do not persist raw data at inference time, we could potentially reduce susceptibility to attacks and privacy issues.
Recent studies focus on developing efficient systems for acoustic scene classification (ASC) using convolutional neural networks (CNNs), which typically consist of consecutive kernels. This paper highlights the benefits of using separate kernels as a more powerful and efficient design approach in ASC tasks. Inspired by the time-frequency nature of audio signals, we propose TF-SepNet, a CNN architecture that separates the feature processing along the time and frequency dimensions. Features resulted from the separate paths are then merged by channels and directly forwarded to the classifier. Instead of the conventional two dimensional (2D) kernel, TF-SepNet incorporates one dimensional (1D) kernels to reduce the computational costs. Experiments have been conducted using the TAU Urban Acoustic Scene 2022 Mobile development dataset. The results show that TF-SepNet outperforms similar state-of-the-arts that use consecutive kernels. A further investigation reveals that the separate kernels lead to a larger effective receptive field (ERF), which enables TF-SepNet to capture more time-frequency features.
Neural networks achieve state-of-the-art performance in image classification, speech recognition, scientific analysis and many more application areas. Due to the high computational complexity and memory footprint of neural networks, various compression techniques, such as pruning and quantization, have been proposed in literature. Pruning sparsifies a neural network, reducing the number of multiplications and memory. However, pruning often fails to capture properties of the underlying hardware, causing unstructured sparsity and load-balance inefficiency, thus bottlenecking resource improvements. We propose a hardware-centric formulation of pruning, by formulating it as a knapsack problem with resource-aware tensor structures. Evaluated on a range of tasks, including sub-microsecond particle classification at CERN's Large Hadron Collider and fast image classification, the proposed method achieves reductions ranging between 55% and 92% in the DSP utilization and up to 81% in BRAM utilization.
We study the incentives behind double-spend attacks on Nakamoto-style Proof-of-Work cryptocurrencies. In these systems, miners are allowed to choose which transactions to reference with their block, and a common strategy for selecting transactions is to simply choose those with the highest fees. This can be problematic if these transactions originate from an adversary with substantial (but less than 50\%) computational power, as high-value transactions can present an incentive for a rational adversary to attempt a double-spend attack if they expect to profit. The most common mechanism for deterring double-spend attacks is for the recipients of large transactions to wait for additional block confirmations (i.e., to increase the attack cost). We argue that this defense mechanism is not satisfactory, as the security of the system is contingent on the actions of its users. Instead, we propose that defending against double-spend attacks should be the responsibility of the miners; specifically, miners should limit the amount of transaction value they include in a block (i.e., reduce the attack reward). To this end, we model cryptocurrency mining as a mean-field game in which we augment the standard mining reward function to simulate the presence of a rational, double-spending adversary. We design and implement an algorithm which characterizes the behavior of miners at equilibrium, and we show that miners who use the adversary-aware reward function accumulate more wealth than those who do not. We show that the optimal strategy for honest miners is to limit the amount of value transferred by each block such that the adversary's expected profit is 0. Additionally, we examine Bitcoin's resilience to double-spend attacks. Assuming a 6 block confirmation time, we find that an attacker with at least 25% of the network mining power can expect to profit from a double-spend attack.
This paper presents a large-scale analysis of the cryptocurrency community on Reddit, shedding light on the intricate relationship between the evolution of their activity, emotional dynamics, and price movements. We analyze over 130M posts on 122 cryptocurrency-related subreddits using temporal analysis, statistical modeling, and emotion detection. While /r/CryptoCurrency and /r/dogecoin are the most active subreddits, we find an overall surge in cryptocurrency-related activity in 2021, followed by a sharp decline. We also uncover a strong relationship in terms of cross-correlation between online activity and the price of various coins, with the changes in the number of posts mostly leading the price changes. Backtesting analysis shows that a straightforward strategy based on the cross-correlation where one buys/sells a coin if the daily number of posts about it is greater/less than the previous would have led to a 3x return on investment. Finally, we shed light on the emotional dynamics of the cryptocurrency communities, finding that joy becomes a prominent indicator during upward market performance, while a decline in the market manifests an increase in anger.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.