亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research aims to find where visually impaired users find appliances hard to use and suggest guideline to solve this issue. 181 visually impaired users have been surveyed, and 12 visually impaired users have been selected based on disability cause and classification. In a home-like environment, we had participants perform tasks which were sorted using Hierarchical task analysis on six major home appliances. From this research we found out that home appliances sometimes only provide visual information which causes difficulty in sensory processing. Also, interfaces tactile/auditory feedbacks are the same making it hard for people to recognize which feature is processed. Blind users cannot see the provided information so they rely on long-term memory to use products. This research provides guideline for button, knob and remote control interface for visually impaired users. This information will be helpful for project planners, designers, and developers to create products which are accessible by visually impaired people. Some of the features will be applied to upcoming home appliance products.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Analysis · 代碼 · Git · 設計 ·
2024 年 8 月 15 日

Software visualization approaches for code reviews are often implemented as standalone applications, which use static code analysis. The goal is to visualize the structural changes introduced by a pull / merge request to facilitate the review process. In this way, for example, structural changes that hinder code evolution can be more easily identified, but understanding the changed program behavior is still mainly done by reading the code. For software visualization to be successful in code review, tools must be provided that go beyond an alternative representation of code changes and integrate well into the developers' daily workflow. In this paper, we report on the novel and in-progress design and implementation of a web-based approach capable of combining static and dynamic analysis data in software city visualizations. Our architectural tool design incorporates modern web technologies such as the integration into common Git hosting services. As a result, code reviewers can explore how the modified software evolves and execute its use cases, which is especially helpful for distributed software systems. In this context, developers can be directly linked from the Git hosting service's issue tracking system to the corresponding software city visualization. This approach eliminates the recurring action of manual data collection and setup. We implement our design by extending the web-based software visualization tool ExplorViz. We invite other researchers to extend our open source software and jointly research this approach. Video URL: //youtu.be/DYxijdCEdrY

Analyzing large sets of visual media remains a challenging task, particularly in mixed-method studies dealing with problematic information and human subjects. Using AI tools in such analyses risks reifying and exacerbating biases, as well as untenable computational and cost limitations. As such, we turn to adopting geometric computer graphics and vision methods towards analyzing a large set of images from a problematic information campaign, in conjunction with human-in-the-loop qualitative analysis. We illustrate an effective case of this approach with the implementation of color quantization towards analyzing online hate image at the US-Mexico border, along with a historicist trace of the history of color quantization and skin tone scales, to inform our usage and reclamation of these methodologies from their racist origins. To that end, we scaffold motivations and the need for more researchers to consider the advantages and risks of reclaiming such methodologies in their own work, situated in our case study.

Current disfluency detection methods heavily rely on costly and scarce human-annotated data. To tackle this issue, some approaches employ heuristic or statistical features to generate disfluent sentences, partially improving detection performance. However, these sentences often deviate from real-life scenarios, constraining overall model enhancement. In this study, we propose a lightweight data augmentation approach for disfluency detection, utilizing the superior generative and semantic understanding capabilities of large language model (LLM) to generate disfluent sentences as augmentation data. We leverage LLM to generate diverse and more realistic sentences guided by specific prompts, without the need for fine-tuning the LLM. Subsequently, we apply an uncertainty-aware data filtering approach to improve the quality of the generated sentences, utilized in training a small detection model for improved performance. Experiments using enhanced data yielded state-of-the-art results. The results showed that using a small amount of LLM-generated enhanced data can significantly improve performance, thereby further enhancing cost-effectiveness. Our code is available here.

In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To address this problem, we introduce a compression method based on knowledge distillation for this field, which largely reduces the number of parameters while preserving model performance as much as possible. Specifically, to enhance the capabilities of smaller models, we design a high-performing large model called Group Multi-view Vision Transformer (GMViT). In GMViT, the view-level ViT first establishes relationships between view-level features. Additionally, to capture deeper features, we employ the grouping module to enhance view-level features into group-level features. Finally, the group-level ViT aggregates group-level features into complete, well-formed 3D shape descriptors. Notably, in both ViTs, we introduce spatial encoding of camera coordinates as innovative position embeddings. Furthermore, we propose two compressed versions based on GMViT, namely GMViT-simple and GMViT-mini. To enhance the training effectiveness of the small models, we introduce a knowledge distillation method throughout the GMViT process, where the key outputs of each GMViT component serve as distillation targets. Extensive experiments demonstrate the efficacy of the proposed method. The large model GMViT achieves excellent 3D classification and retrieval results on the benchmark datasets ModelNet, ShapeNetCore55, and MCB. The smaller models, GMViT-simple and GMViT-mini, reduce the parameter size by 8 and 17.6 times, respectively, and improve shape recognition speed by 1.5 times on average, while preserving at least 90% of the classification and retrieval performance. The code is available at //github.com/bigdata-graph/GMViT.

Many studies have demonstrated that large language models (LLMs) can produce harmful responses, exposing users to unexpected risks when LLMs are deployed. Previous studies have proposed comprehensive taxonomies of the risks posed by LLMs, as well as corresponding prompts that can be used to examine the safety mechanisms of LLMs. However, the focus has been almost exclusively on English, and little has been explored for other languages. Here we aim to bridge this gap. We first introduce a dataset for the safety evaluation of Chinese LLMs, and then extend it to two other scenarios that can be used to better identify false negative and false positive examples in terms of risky prompt rejections. We further present a set of fine-grained safety assessment criteria for each risk type, facilitating both manual annotation and automatic evaluation in terms of LLM response harmfulness. Our experiments on five LLMs show that region-specific risks are the prevalent type of risk, presenting the major issue with all Chinese LLMs we experimented with. Our data is available at //github.com/Libr-AI/do-not-answer. Warning: this paper contains example data that may be offensive, harmful, or biased.

Soft grippers, with their inherent compliance and adaptability, show advantages for delicate and versatile manipulation tasks in robotics. This paper presents a novel approach to underactuated control of multiple soft actuators, explicitly focusing on the coordination of soft fingers within a soft gripper. Utilizing a single syringe pump as the actuation mechanism, we address the challenge of coordinating multiple degrees of freedom of a compliant system. The theoretical framework applies concepts from stable inversion theory, adapting them to the unique dynamics of the underactuated soft gripper. Through meticulous mechatronic system design and controller synthesis, we demonstrate the efficacy and applicability of our approach in achieving precise and coordinated manipulation tasks in simulation and experimentation. Our findings not only contribute to the advancement of soft robot control but also offer practical insights into the design and control of underactuated systems for real-world applications.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司