Over the past few years, the division of gait phases has emerged as a complex area of research that carries significant importance for various applications in the field of gait technologies. The accurate partitioning of gait phases plays a crucial role in advancing these applications. Researchers have been exploring a range of sensors that can be employed to provide data for algorithms involved in gait phase partitioning. These sensors can be broadly categorized into two types: wearable and non-wearable, each offering unique advantages and capabilities. In our study aimed at examining the current approaches to gait analysis and detection specifically designed for implementation in ambulatory rehabilitation systems, we conducted a comprehensive meta-analysis of existing research studies. Our analysis revealed a diverse range of sensors and sensor combinations that demonstrate the ability to analyze gait patterns in ambulatory settings. These sensor options vary from basic force-based binary switches to more intricate setups incorporating multiple inertial sensors and sophisticated algorithms. The findings highlight the wide spectrum of available technologies and methodologies used in gait analysis for ambulatory applications. To conduct an extensive review, we systematically examined two prominent databases, IEEE and Scopus, with the aim of identifying relevant studies pertaining to gait analysis. The search criteria were limited to 189 papers published between 1999 and 2023. From this pool, we identified and included five papers that specifically focused on various techniques including Thresholding, Quasi-static method, adaptive classifier, and SVM-based approaches. These selected papers provided valuable insights for our review.
Digital Imaging and Communication System (DICOM) is widely used throughout the public health sector for portability in medical imaging. However, these DICOM files have vulnerabilities present in the preamble section. Successful exploitation of these vulnerabilities can allow attackers to embed executable codes in the 128-Byte preamble of DICOM files. Embedding the malicious executable will not interfere with the readability or functionality of DICOM imagery. However, it will affect the underline system silently upon viewing these files. This paper shows the infiltration of Windows malware executables into DICOM files. On viewing the files, the malicious DICOM will get executed and eventually infect the entire hospital network through the radiologist's workstation. The code injection process of executing malware in DICOM files affects the hospital networks and workstations' memory. Memory forensics for the infected radiologist's workstation is crucial as it can detect which malware disrupts the hospital environment, and future detection methods can be deployed. In this paper, we consider the machine learning (ML) algorithms to conduct memory forensics on three memory dump categories: Trojan, Spyware, and Ransomware, taken from the CIC-MalMem-2022 dataset. We obtain the highest accuracy of 75\% with the Random Forest model. For estimating the feature importance for ML model prediction, we leveraged the concept of Shapley values.
The recent success of multiple neural architectures like CNNs, Transformers, and MLP-Mixers motivated us to look for similarities and differences between them. We found that these architectures can be interpreted through the lens of a general concept of dimension mixing. Research on coupling flows and the butterfly transform shows that partial and hierarchical signal mixing schemes are sufficient for efficient and expressive function approximation. In this work, we study group-wise sparse, non-linear, multi-layered and learnable mixing schemes of inputs and find that they are complementary to many standard neural architectures. Following our observations and drawing inspiration from the Fast Fourier Transform, we generalize Butterfly Structure to use non-linear mixer function allowing for MLP as mixing function called Butterfly MLP. We were also able to mix along sequence dimension for Transformer-based architectures called Butterfly Attention. Experiments on CIFAR and LRA datasets demonstrate that the proposed Non-Linear Butterfly Mixers are efficient and scale well when the host architectures are used as mixing function. Additionally, we propose Patch-Only MLP-Mixer for processing spatial 2D signals demonstrating a different dimension mixing strategy.
Deep convolutional neural networks have been widely applied in salient object detection and have achieved remarkable results in this field. However, existing models suffer from information distortion caused by interpolation during up-sampling and down-sampling. In response to this drawback, this article starts from two directions in the network: feature and label. On the one hand, a novel cascaded interaction network with a guidance module named global-local aligned attention (GAA) is designed to reduce the negative impact of interpolation on the feature side. On the other hand, a deep supervision strategy based on edge erosion is proposed to reduce the negative guidance of label interpolation on lateral output. Extensive experiments on five popular datasets demonstrate the superiority of our method.
With the proliferation of edge computing, efficient AI inference on edge devices has become essential for intelligent applications such as autonomous vehicles and VR/AR. In this context, we address the problem of efficient remote object recognition by optimizing feature transmission between mobile devices and edge servers. We propose an online optimization framework to address the challenge of dynamic channel conditions and device mobility in an end-to-end communication system. Our approach builds upon existing methods by leveraging a semantic knowledge base to drive multi-level feature transmission, accounting for temporal factors and dynamic elements throughout the transmission process. To solve the online optimization problem, we design a novel soft actor-critic-based deep reinforcement learning system with a carefully designed reward function for real-time decision-making, overcoming the optimization difficulty of the NP-hard problem and achieving the minimization of semantic loss while respecting latency constraints. Numerical results showcase the superiority of our approach compared to traditional greedy methods under various system setups.
Although the expenses associated with DNA sequencing have been rapidly decreasing, the current cost of sequencing information stands at roughly $120/GB, which is dramatically more expensive than reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost but also the latency of DNA storage by initiating the study of the DNA coverage depth problem, which aims to reduce the required number of reads to retrieve information from the storage system. Under this framework, our main goal is to understand the effect of error-correcting codes and retrieval algorithms on the required sequencing coverage depth. We establish that the expected number of reads that are required for information retrieval is minimized when the channel follows a uniform distribution. We also derive upper and lower bounds on the probability distribution of this number of required reads and provide a comprehensive upper and lower bound on its expected value. We further prove that for a noiseless channel and uniform distribution, MDS codes are optimal in terms of minimizing the expected number of reads. Additionally, we study the DNA coverage depth problem under the random-access setup, in which the user aims to retrieve just a specific information unit from the entire DNA storage system. We prove that the expected retrieval time is at least k for [n,k] MDS codes as well as for other families of codes. Furthermore, we present explicit code constructions that achieve expected retrieval times below k and evaluate their performance through analytical methods and simulations. Lastly, we provide lower bounds on the maximum expected retrieval time. Our findings offer valuable insights for reducing the cost and latency of DNA storage.
Graph neural networks (GNNs) are being increasingly used in many high-stakes tasks, and as a result, there is growing attention on their fairness recently. GNNs have been shown to be unfair as they tend to make discriminatory decisions toward certain demographic groups, divided by sensitive attributes such as gender and race. While recent works have been devoted to improving their fairness performance, they often require accessible demographic information. This greatly limits their applicability in real-world scenarios due to legal restrictions. To address this problem, we present a demographic-agnostic method to learn fair GNNs via knowledge distillation, namely FairGKD. Our work is motivated by the empirical observation that training GNNs on partial data (i.e., only node attributes or topology data) can improve their fairness, albeit at the cost of utility. To make a balanced trade-off between fairness and utility performance, we employ a set of fairness experts (i.e., GNNs trained on different partial data) to construct the synthetic teacher, which distills fairer and informative knowledge to guide the learning of the GNN student. Experiments on several benchmark datasets demonstrate that FairGKD, which does not require access to demographic information, significantly improves the fairness of GNNs by a large margin while maintaining their utility.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.