The recent success of multiple neural architectures like CNNs, Transformers, and MLP-Mixers motivated us to look for similarities and differences between them. We found that these architectures can be interpreted through the lens of a general concept of dimension mixing. Research on coupling flows and the butterfly transform shows that partial and hierarchical signal mixing schemes are sufficient for efficient and expressive function approximation. In this work, we study group-wise sparse, non-linear, multi-layered and learnable mixing schemes of inputs and find that they are complementary to many standard neural architectures. Following our observations and drawing inspiration from the Fast Fourier Transform, we generalize Butterfly Structure to use non-linear mixer function allowing for MLP as mixing function called Butterfly MLP. We were also able to mix along sequence dimension for Transformer-based architectures called Butterfly Attention. Experiments on CIFAR and LRA datasets demonstrate that the proposed Non-Linear Butterfly Mixers are efficient and scale well when the host architectures are used as mixing function. Additionally, we propose Patch-Only MLP-Mixer for processing spatial 2D signals demonstrating a different dimension mixing strategy.
Metamodels, or the regression analysis of Monte Carlo simulation (MCS) results, provide a powerful tool to summarize MCS findings. However, an as of yet unexplored approach is the use of multilevel metamodels (MLMM) that better account for the dependent data structure of MCS results that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can dramatically improve efficiency over the traditional regression approach, better account for complex MCS designs, and provide new insights into the generalizability of MCS findings.
Recently proposed methods for implicitly representing signals such as images, scenes, or geometries using coordinate-based neural network architectures often do not leverage the choice of activation functions, or do so only to a limited extent. In this paper, we introduce the Hyperbolic Oscillation function (HOSC), a novel activation function with a controllable sharpness parameter. Unlike any previous activations, HOSC has been specifically designed to better capture sudden changes in the input signal, and hence sharp or acute features of the underlying data, as well as smooth low-frequency transitions. Due to its simplicity and modularity, HOSC offers a plug-and-play functionality that can be easily incorporated into any existing method employing a neural network as a way of implicitly representing a signal. We benchmark HOSC against other popular activations in an array of general tasks, empirically showing an improvement in the quality of obtained representations, provide the mathematical motivation behind the efficacy of HOSC, and discuss its limitations.
Speaker embeddings carry valuable emotion-related information, which makes them a promising resource for enhancing speech emotion recognition (SER), especially with limited labeled data. Traditionally, it has been assumed that emotion information is indirectly embedded within speaker embeddings, leading to their under-utilization. Our study reveals a direct and useful link between emotion and state-of-the-art speaker embeddings in the form of intra-speaker clusters. By conducting a thorough clustering analysis, we demonstrate that emotion information can be readily extracted from speaker embeddings. In order to leverage this information, we introduce a novel contrastive pretraining approach applied to emotion-unlabeled data for speech emotion recognition. The proposed approach involves the sampling of positive and the negative examples based on the intra-speaker clusters of speaker embeddings. The proposed strategy, which leverages extensive emotion-unlabeled data, leads to a significant improvement in SER performance, whether employed as a standalone pretraining task or integrated into a multi-task pretraining setting.
Large Language Models (LLMs) are vulnerable to `Jailbreaking' prompts, a type of attack that can coax these models into generating harmful and illegal content. In this paper, we show that pruning up to 20% of LLM parameters markedly increases their resistance to such attacks without additional training and without sacrificing their performance in standard benchmarks. Intriguingly, we discovered that the enhanced safety observed post-pruning correlates to the initial safety training level of the model, hinting that the effect of pruning could be more general and may hold for other LLM behaviors beyond safety. Additionally, we introduce a curated dataset of 225 harmful tasks across five categories, inserted into ten different Jailbreaking prompts, showing that pruning aids LLMs in concentrating attention on task-relevant tokens in jailbreaking prompts. Lastly, our experiments reveal that the prominent chat models, such as LLaMA-2 Chat, Vicuna, and Mistral Instruct exhibit high susceptibility to jailbreaking attacks, with some categories achieving nearly 70-100% success rate. These insights underline the potential of pruning as a generalizable approach for improving LLM safety, reliability, and potentially other desired behaviors.
Leveraging Input Convex Neural Networks (ICNNs), ICNN-based Model Predictive Control (MPC) successfully attains globally optimal solutions by upholding convexity within the MPC framework. However, current ICNN architectures encounter the issue of vanishing/exploding gradients, which limits their ability to serve as deep neural networks for complex tasks. Additionally, the current neural network-based MPC, including conventional neural network-based MPC and ICNN-based MPC, faces slower convergence speed when compared to MPC based on first-principles models. In this study, we leverage the principles of ICNNs to propose a novel Input Convex LSTM for Lyapunov-based MPC, with the specific goal of reducing convergence time and mitigating the vanishing/exploding gradient problem while ensuring closed-loop stability. From a simulation study of a nonlinear chemical reactor, we observed a mitigation of vanishing/exploding gradient problem and a reduction in convergence time, with a percentage decrease of 46.7%, 31.3%, and 20.2% compared to baseline plain RNN, plain LSTM, and Input Convex Recurrent Neural Networks, respectively.
Vision Transformer (ViT) has performed remarkably in various computer vision tasks. Nonetheless, affected by the massive amount of parameters, ViT usually suffers from serious overfitting problems with a relatively limited number of training samples. In addition, ViT generally demands heavy computing resources, which limit its deployment on resource-constrained devices. As a type of model-compression method, model binarization is potentially a good choice to solve the above problems. Compared with the full-precision one, the model with the binarization method replaces complex tensor multiplication with simple bit-wise binary operations and represents full-precision model parameters and activations with only 1-bit ones, which potentially solves the problem of model size and computational complexity, respectively. In this paper, we investigate a binarized ViT model. Empirically, we observe that the existing binarization technology designed for Convolutional Neural Networks (CNN) cannot migrate well to a ViT's binarization task. We also find that the decline of the accuracy of the binary ViT model is mainly due to the information loss of the Attention module and the Value vector. Therefore, we propose a novel model binarization technique, called Group Superposition Binarization (GSB), to deal with these issues. Furthermore, in order to further improve the performance of the binarization model, we have investigated the gradient calculation procedure in the binarization process and derived more proper gradient calculation equations for GSB to reduce the influence of gradient mismatch. Then, the knowledge distillation technique is introduced to alleviate the performance degradation caused by model binarization. Analytically, model binarization can limit the parameters search space during parameter updates while training a model....
Hierarchical federated learning (HFL) enables distributed training of models across multiple devices with the help of several edge servers and a cloud edge server in a privacy-preserving manner. In this paper, we consider HFL with highly mobile devices, mainly targeting at vehicular networks. Through convergence analysis, we show that mobility influences the convergence speed by both fusing the edge data and shuffling the edge models. While mobility is usually considered as a challenge from the perspective of communication, we prove that it increases the convergence speed of HFL with edge-level heterogeneous data, since more diverse data can be incorporated. Furthermore, we demonstrate that a higher speed leads to faster convergence, since it accelerates the fusion of data. Simulation results show that mobility increases the model accuracy of HFL by up to 15.1% when training a convolutional neural network on the CIFAR-10 dataset.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.