亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) are vulnerable to `Jailbreaking' prompts, a type of attack that can coax these models into generating harmful and illegal content. In this paper, we show that pruning up to 20% of LLM parameters markedly increases their resistance to such attacks without additional training and without sacrificing their performance in standard benchmarks. Intriguingly, we discovered that the enhanced safety observed post-pruning correlates to the initial safety training level of the model, hinting that the effect of pruning could be more general and may hold for other LLM behaviors beyond safety. Additionally, we introduce a curated dataset of 225 harmful tasks across five categories, inserted into ten different Jailbreaking prompts, showing that pruning aids LLMs in concentrating attention on task-relevant tokens in jailbreaking prompts. Lastly, our experiments reveal that the prominent chat models, such as LLaMA-2 Chat, Vicuna, and Mistral Instruct exhibit high susceptibility to jailbreaking attacks, with some categories achieving nearly 70-100% success rate. These insights underline the potential of pruning as a generalizable approach for improving LLM safety, reliability, and potentially other desired behaviors.

相關內容

Self-supervised learned models have been found to be very effective for certain speech tasks such as automatic speech recognition, speaker identification, keyword spotting and others. While the features are undeniably useful in speech recognition and associated tasks, their utility in speech enhancement systems is yet to be firmly established, and perhaps not properly understood. In this paper, we investigate the uses of SSL representations for single-channel speech enhancement in challenging conditions and find that they add very little value for the enhancement task. Our constraints are designed around on-device real-time speech enhancement -- model is causal, the compute footprint is small. Additionally, we focus on low SNR conditions where such models struggle to provide good enhancement. In order to systematically examine how SSL representations impact performance of such enhancement models, we propose a variety of techniques to utilize these embeddings which include different forms of knowledge-distillation and pre-training.

Federated Learning (FL) trains a black-box and high-dimensional model among different clients by exchanging parameters instead of direct data sharing, which mitigates the privacy leak incurred by machine learning. However, FL still suffers from membership inference attacks (MIA) or data reconstruction attacks (DRA). In particular, an attacker can extract the information from local datasets by constructing DRA, which cannot be effectively throttled by existing techniques, e.g., Differential Privacy (DP). In this paper, we aim to ensure a strong privacy guarantee for FL under DRA. We prove that reconstruction errors under DRA are constrained by the information acquired by an attacker, which means that constraining the transmitted information can effectively throttle DRA. To quantify the information leakage incurred by FL, we establish a channel model, which depends on the upper bound of joint mutual information between the local dataset and multiple transmitted parameters. Moreover, the channel model indicates that the transmitted information can be constrained through data space operation, which can improve training efficiency and the model accuracy under constrained information. According to the channel model, we propose algorithms to constrain the information transmitted in a single round of local training. With a limited number of training rounds, the algorithms ensure that the total amount of transmitted information is limited. Furthermore, our channel model can be applied to various privacy-enhancing techniques (such as DP) to enhance privacy guarantees against DRA. Extensive experiments with real-world datasets validate the effectiveness of our methods.

Generative Adversarial Networks (GANs) have been widely used to recover vivid textures in image super-resolution (SR) tasks. In particular, one discriminator is utilized to enable the SR network to learn the distribution of real-world high-quality images in an adversarial training manner. However, the distribution learning is overly coarse-grained, which is susceptible to virtual textures and causes counter-intuitive generation results. To mitigate this, we propose the simple and effective Semantic-aware Discriminator (denoted as SeD), which encourages the SR network to learn the fine-grained distributions by introducing the semantics of images as a condition. Concretely, we aim to excavate the semantics of images from a well-trained semantic extractor. Under different semantics, the discriminator is able to distinguish the real-fake images individually and adaptively, which guides the SR network to learn the more fine-grained semantic-aware textures. To obtain accurate and abundant semantics, we take full advantage of recently popular pretrained vision models (PVMs) with extensive datasets, and then incorporate its semantic features into the discriminator through a well-designed spatial cross-attention module. In this way, our proposed semantic-aware discriminator empowered the SR network to produce more photo-realistic and pleasing images. Extensive experiments on two typical tasks, i.e., SR and Real SR have demonstrated the effectiveness of our proposed methods.

Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. How to effectively adapt LLMs to new scenarios with fewer training samples is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation. SEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome its own shortcomings, thus achieving efficient learning. Specifically, SEED involves identifying error code generated by LLMs, employing Self-revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to traditional fine-tuning approaches, SEED achieves superior performance with fewer training samples, showing a relative improvement of 27.2%-325.0% in Pass@1. We also validate the effectiveness of Self-revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, SEED consistently demonstrates strong performance across various LLMs, underscoring its generalizability.

Processing-using-DRAM (PuD) is an emerging paradigm that leverages the analog operational properties of DRAM circuitry to enable massively parallel in-DRAM computation. PuD has the potential to significantly reduce or eliminate costly data movement between processing elements and main memory. Prior works experimentally demonstrate three-input MAJ (i.e., MAJ3) and two-input AND and OR operations in commercial off-the-shelf (COTS) DRAM chips. Yet, demonstrations on COTS DRAM chips do not provide a functionally complete set of operations (e.g., NAND or AND and NOT). We experimentally demonstrate that COTS DRAM chips are capable of performing 1) functionally-complete Boolean operations: NOT, NAND, and NOR and 2) many-input (i.e., more than two-input) AND and OR operations. We present an extensive characterization of new bulk bitwise operations in 256 off-the-shelf modern DDR4 DRAM chips. We evaluate the reliability of these operations using a metric called success rate: the fraction of correctly performed bitwise operations. Among our 19 new observations, we highlight four major results. First, we can perform the NOT operation on COTS DRAM chips with a 98.37% success rate on average. Second, we can perform up to 16-input NAND, NOR, AND, and OR operations on COTS DRAM chips with high reliability (e.g., 16-input NAND, NOR, AND, and OR with an average success rate of 94.94%, 95.87%, 94.94%, and 95.85%, respectively). Third, data pattern only slightly affects bitwise operations. Our results show that executing NAND, NOR, AND, and OR operations with random data patterns decreases the success rate compared to all logic-1/logic-0 patterns by 1.39%, 1.97%, 1.43%, and 1.98%, respectively. Fourth, bitwise operations are highly resilient to temperature changes, with small success rate fluctuations of at most 1.66% among all the tested operations when the temperature is increased from 50C to 95C.

Large Language Models (LLMs) are a class of generative AI models built using the Transformer network, capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language. LLMs promise to revolutionize society, yet training these foundational models poses immense challenges. Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance. Unlike traditional keyword-based search methods, semantic search utilizes the meaning and context of words to grasp the intent behind queries and deliver more precise outcomes. Elasticsearch emerges as one of the most popular tools for implementing semantic search an exceptionally scalable and robust search engine designed for indexing and searching extensive datasets. In this article, we delve into the fundamentals of semantic search and explore how to harness Elasticsearch and Transformer models to bolster large language model processing paradigms. We gain a comprehensive understanding of semantic search principles and acquire practical skills for implementing semantic search in real-world model application scenarios.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司