亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: To analyze the current scientific knowledge and research lines focused on environmentally sustainable health systems, including the role of nurses. Background: There seem to be differences between creating interventions focused on environmentally sustainable health systems, including nurses, and the scarcity of research on this topic, framed on the Sustainable Development Goals. Methods: A bibliometric analysis was carried out, via three databases (Web of Science, Scopus, and Pubmed), and the guideline recommendations were followed to select bibliometric data. Results: The search resulted in 159 publications, significantly increasing the trends from 2017 to 2021 (p=0.028). The most relevant countries in this area were the United States of America, the United Kingdom, and Sweden. Also, the top articles were from relevant journals, indexed in Journal Citation Report, and the first and the second quartile linked to the nursing field and citations (p<0.001). Conclusion: Education is key to achieving environmentally sustainable health systems via institutions and policies. Implications for nursing management: There is a lack of experimental data and policies on achieving or maintaining environmentally sustainable health care systems, indicating that nurses have an important role and should be consulted and included in decision-making policies regarding sustainability in the healthcare systems.

相關內容

Feature pyramids have been widely adopted in convolutional neural networks (CNNs) and transformers for tasks like medical image segmentation and object detection. However, the currently existing models generally focus on the Encoder-side Transformer to extract features, from which decoder improvement can bring further potential with well-designed architecture. We propose CFPFormer, a novel decoder block that integrates feature pyramids and transformers. Specifically, by leveraging patch embedding, cross-layer feature concatenation, and Gaussian attention mechanisms, CFPFormer enhances feature extraction capabilities while promoting generalization across diverse tasks. Benefiting from Transformer structure and U-shaped Connections, our introduced model gains the ability to capture long-range dependencies and effectively up-sample feature maps. Our model achieves superior performance in detecting small objects compared to existing methods. We evaluate CFPFormer on medical image segmentation datasets and object detection benchmarks (VOC 2007, VOC2012, MS-COCO), demonstrating its effectiveness and versatility. On the ACDC Post-2017-MICCAI-Challenge online test set, our model reaches exceptionally impressive accuracy, and performed well compared with the original decoder setting in Synapse multi-organ segmentation dataset.

Data-driven applications and services have been increasingly deployed in all aspects of life including healthcare and medical services in which a huge amount of personal data is collected, aggregated, and processed in a centralised server from various sources. As a consequence, preserving the data privacy and security of these applications is of paramount importance. Since May 2018, the new data protection legislation in the EU/UK, namely the General Data Protection Regulation (GDPR), has come into force and this has called for a critical need for modelling compliance with the GDPR's sophisticated requirements. Existing threat modelling techniques are not designed to model GDPR compliance, particularly in a complex system where personal data is collected, processed, manipulated, and shared with third parties. In this paper, we present a novel comprehensive solution for developing a threat modelling technique to address threats of non-compliance and mitigate them by taking GDPR requirements as the baseline and combining them with the existing security and privacy modelling techniques (i.e., \textit{STRIDE} and \textit{LINDDUN}, respectively). For this purpose, we propose a new data flow diagram integrated with the GDPR principles, develop a knowledge base for the non-compliance threats, and leverage an inference engine for reasoning the GDPR non-compliance threats over the knowledge base. Finally, we demonstrate our solution for threats of non-compliance with legal basis and accountability in a telehealth system to show the feasibility and effectiveness of the proposed solution.

In recent years, the neural network backdoor hidden in the parameters of the federated learning model has been proved to have great security risks. Considering the characteristics of trigger generation, data poisoning and model training in backdoor attack, this paper designs a backdoor attack method based on federated learning. Firstly, aiming at the concealment of the backdoor trigger, a TrojanGan steganography model with encoder-decoder structure is designed. The model can encode specific attack information as invisible noise and attach it to the image as a backdoor trigger, which improves the concealment and data transformations of the backdoor trigger.Secondly, aiming at the problem of single backdoor trigger mode, an image poisoning attack method called combination trigger attack is proposed. This method realizes multi-backdoor triggering by multiplexing combined triggers and improves the robustness of backdoor attacks. Finally, aiming at the problem that the local training mechanism leads to the decrease of the success rate of backdoor attack, a dual model replacement backdoor attack algorithm based on federated learning is designed. This method can improve the success rate of backdoor attack while maintaining the performance of the federated learning aggregation model. Experiments show that the attack strategy in this paper can not only achieve high backdoor concealment and diversification of trigger forms under federated learning, but also achieve good attack success rate in multi-target attacks.door concealment and diversification of trigger forms but also achieve good results in multi-target attacks.

In recent years, research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML), particularly in the areas of conversational, human-compatible, and cooperative AI. For example, around 12% and 6% of publications at recent AAAI and NeurIPS conferences indicate the collection of original human data, respectively. Yet AI and ML researchers lack guidelines for ethical, transparent research practices with human participants. Fewer than one out of every four of these AAAI and NeurIPS papers provide details of ethical review, the collection of informed consent, or participant compensation. This paper aims to bridge this gap by exploring normative similarities and differences between AI research and related fields that involve human participants. Though psychology, human-computer interaction, and other adjacent fields offer historic lessons and helpful insights, AI research raises several specific concerns$\unicode{x2014}$namely, participatory design, crowdsourced dataset development, and an expansive role of corporations$\unicode{x2014}$that necessitate a contextual ethics framework. To address these concerns, this paper outlines a set of guidelines for ethical and transparent practice with human participants in AI and ML research. These guidelines can be found in Section 4 on pp. 4$\unicode{x2013}$7.

Unsupervised Representation Learning on graphs is gaining traction due to the increasing abundance of unlabelled network data and the compactness, richness, and usefulness of the representations generated. In this context, the need to consider fairness and bias constraints while generating the representations has been well-motivated and studied to some extent in prior works. One major limitation of most of the prior works in this setting is that they do not aim to address the bias generated due to connectivity patterns in the graphs, such as varied node centrality, which leads to a disproportionate performance across nodes. In our work, we aim to address this issue of mitigating bias due to inherent graph structure in an unsupervised setting. To this end, we propose CAFIN, a centrality-aware fairness-inducing framework that leverages the structural information of graphs to tune the representations generated by existing frameworks. We deploy it on GraphSAGE (a popular framework in this domain) and showcase its efficacy on two downstream tasks - Node Classification and Link Prediction. Empirically, CAFIN consistently reduces the performance disparity across popular datasets (varying from 18 to 80% reduction in performance disparity) from various domains while incurring only a minimal cost of fairness.

The Receiver Operating Characteristic (ROC) curve stands as a cornerstone in assessing the efficacy of biomarkers for disease diagnosis. Beyond merely evaluating performance, it provides with an optimal cutoff for biomarker values, crucial for disease categorization. While diverse methodologies exist for threshold estimation, less attention has been paid to integrating covariate impact into this process. Covariates can strongly impact diagnostic summaries, leading to variations across different covariate levels. Therefore, a tailored covariate-based framework is imperative for outlining covariate-specific optimal cutoffs. Moreover, recent investigations into cutoff estimators have overlooked the influence of ROC curve estimation methodologies. This study endeavors to bridge this gap by addressing the research void. Extensive simulation studies are conducted to scrutinize the performance of ROC curve estimation models in estimating different cutoffs in varying scenarios, encompassing diverse data-generating mechanisms and covariate effects. Additionally, leveraging the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the research assesses the performance of different biomarkers in diagnosing Alzheimer's disease and determines the suitable optimal cutoffs.

Deep learning is dramatically transforming the field of medical imaging and radiology, enabling the identification of pathologies in medical images, including computed tomography (CT) and X-ray scans. However, the performance of deep learning models, particularly in segmentation tasks, is often limited by the need for extensive annotated datasets. To address this challenge, the capabilities of weakly supervised semantic segmentation are explored through the lens of Explainable AI and the generation of counterfactual explanations. The scope of this research is development of a novel counterfactual inpainting approach (COIN) that flips the predicted classification label from abnormal to normal by using a generative model. For instance, if the classifier deems an input medical image X as abnormal, indicating the presence of a pathology, the generative model aims to inpaint the abnormal region, thus reversing the classifier's original prediction label. The approach enables us to produce precise segmentations for pathologies without depending on pre-existing segmentation masks. Crucially, image-level labels are utilized, which are substantially easier to acquire than creating detailed segmentation masks. The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia. The findings indicate that COIN greatly surpasses established attribution methods, such as RISE, ScoreCAM, and LayerCAM, as well as an alternative counterfactual explanation method introduced by Singla et al. This evidence suggests that COIN is a promising approach for semantic segmentation of tumors in CT images, and presents a step forward in making deep learning applications more accessible and effective in healthcare, where annotated data is scarce.

This study focuses on how different modalities of human communication can be used to distinguish between healthy controls and subjects with schizophrenia who exhibit strong positive symptoms. We developed a multi-modal schizophrenia classification system using audio, video, and text. Facial action units and vocal tract variables were extracted as low-level features from video and audio respectively, which were then used to compute high-level coordination features that served as the inputs to the audio and video modalities. Context-independent text embeddings extracted from transcriptions of speech were used as the input for the text modality. The multi-modal system is developed by fusing a segment-to-session-level classifier for video and audio modalities with a text model based on a Hierarchical Attention Network (HAN) with cross-modal attention. The proposed multi-modal system outperforms the previous state-of-the-art multi-modal system by 8.53% in the weighted average F1 score.

Addressing health disparities among different demographic groups is a key challenge in public health. Despite many efforts, there is still a gap in understanding how these disparities unfold over time. Our paper focuses on this overlooked longitudinal aspect, which is crucial in both clinical and public health settings. In this paper, we introduce a longitudinal disparity decomposition method that decomposes disparities into three components: the explained disparity linked to differences in the exploratory variables' conditional distribution when the modifier distribution is identical between majority and minority groups, the explained disparity that emerges specifically from the unequal distribution of the modifier and its interaction with covariates, and the unexplained disparity. The proposed method offers a dynamic alternative to the traditional Peters-Belson decomposition approach, tackling both the potential reduction in disparity if the covariate distributions of minority groups matched those of the majority group and the evolving nature of disparity over time. We apply the proposed approach to a fetal growth study to gain insights into disparities between different race/ethnicity groups in fetal developmental progress throughout the course of pregnancy.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

北京阿比特科技有限公司