亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces iRoCo (intuitive Robot Control) - a framework for ubiquitous human-robot collaboration using a single smartwatch and smartphone. By integrating probabilistic differentiable filters, iRoCo optimizes a combination of precise robot control and unrestricted user movement from ubiquitous devices. We demonstrate and evaluate the effectiveness of iRoCo in practical teleoperation and drone piloting applications. Comparative analysis shows no significant difference between task performance with iRoCo and gold-standard control systems in teleoperation tasks. Additionally, iRoCo users complete drone piloting tasks 32\% faster than with a traditional remote control and report less frustration in a subjective load index questionnaire. Our findings strongly suggest that iRoCo is a promising new approach for intuitive robot control through smartwatches and smartphones from anywhere, at any time. The code is available at www.github.com/wearable-motion-capture

相關內容

This paper presents the UniMER dataset to provide the first study on Mathematical Expression Recognition (MER) towards complex real-world scenarios. The UniMER dataset consists of a large-scale training set UniMER-1M offering an unprecedented scale and diversity with one million training instances and a meticulously designed test set UniMER-Test that reflects a diverse range of formula distributions prevalent in real-world scenarios. Therefore, the UniMER dataset enables the training of a robust and high-accuracy MER model and comprehensive evaluation of model performance. Moreover, we introduce the Universal Mathematical Expression Recognition Network (UniMERNet), an innovative framework designed to enhance MER in practical scenarios. UniMERNet incorporates a Length-Aware Module to process formulas of varied lengths efficiently, thereby enabling the model to handle complex mathematical expressions with greater accuracy. In addition, UniMERNet employs our UniMER-1M data and image augmentation techniques to improve the model's robustness under different noise conditions. Our extensive experiments demonstrate that UniMERNet outperforms existing MER models, setting a new benchmark in various scenarios and ensuring superior recognition quality in real-world applications. The dataset and model are available at //github.com/opendatalab/UniMERNet.

This paper introduces EcoPull, a sustainable Internet of Things (IoT) framework empowered by tiny machine learning (TinyML) models for fetching images from wireless visual sensor networks. Two types of learnable TinyML models are installed in the IoT devices: i) a behavior model and ii) an image compressor model. The first filters out irrelevant images for the current task, reducing unnecessary transmission and resource competition among the devices. The second allows IoT devices to communicate with the receiver via latent representations of images, reducing communication bandwidth usage. However, integrating learnable modules into IoT devices comes at the cost of increased energy consumption due to inference. The numerical results show that the proposed framework can save > 70% energy compared to the baseline while maintaining the quality of the retrieved images at the ES.

The rapid growth and popularity of large language model (LLM) app stores have created new opportunities and challenges for researchers, developers, users, and app store managers. As the LLM app ecosystem continues to evolve, it is crucial to understand the current landscape and identify potential areas for future research and development. This paper presents a forward-looking analysis of LLM app stores, focusing on key aspects such as data mining, security risk identification, development assistance, etc. By examining these aspects, we aim to provide a vision for future research directions and highlight the importance of collaboration among stakeholders to address the challenges and opportunities within the LLM app ecosystem. The insights and recommendations provided in this paper serve as a foundation for driving innovation, ensuring responsible development, and creating a thriving, user-centric LLM app landscape.

Pursuit-evasion games (PEGs) model interactions between a team of pursuers and an evader in graph-based environments such as urban street networks. Recent advancements have demonstrated the effectiveness of the pre-training and fine-tuning paradigm in PSRO to improve scalability in solving large-scale PEGs. However, these methods primarily focus on specific PEGs with fixed initial conditions that may vary substantially in real-world scenarios, which significantly hinders the applicability of the traditional methods. To address this issue, we introduce Grasper, a GeneRAlist purSuer for Pursuit-Evasion pRoblems, capable of efficiently generating pursuer policies tailored to specific PEGs. Our contributions are threefold: First, we present a novel architecture that offers high-quality solutions for diverse PEGs, comprising critical components such as (i) a graph neural network (GNN) to encode PEGs into hidden vectors, and (ii) a hypernetwork to generate pursuer policies based on these hidden vectors. As a second contribution, we develop an efficient three-stage training method involving (i) a pre-pretraining stage for learning robust PEG representations through self-supervised graph learning techniques like GraphMAE, (ii) a pre-training stage utilizing heuristic-guided multi-task pre-training (HMP) where heuristic-derived reference policies (e.g., through Dijkstra's algorithm) regularize pursuer policies, and (iii) a fine-tuning stage that employs PSRO to generate pursuer policies on designated PEGs. Finally, we perform extensive experiments on synthetic and real-world maps, showcasing Grasper's significant superiority over baselines in terms of solution quality and generalizability. We demonstrate that Grasper provides a versatile approach for solving pursuit-evasion problems across a broad range of scenarios, enabling practical deployment in real-world situations.

Retrieval-Augmented Generation (RAG) has shown significant improvements in various natural language processing tasks by integrating the strengths of large language models (LLMs) and external knowledge databases. However, RAG introduces long sequence generation and leads to high computation and memory costs. We propose Thoth, a novel multilevel dynamic caching system tailored for RAG. Our analysis benchmarks current RAG systems, pinpointing the performance bottleneck (i.e., long sequence due to knowledge injection) and optimization opportunities (i.e., caching knowledge's intermediate states). Based on these insights, we design Thoth, which organizes the intermediate states of retrieved knowledge in a knowledge tree and caches them in the GPU and host memory hierarchy. Thoth proposes a replacement policy that is aware of LLM inference characteristics and RAG retrieval patterns. It also dynamically overlaps the retrieval and inference steps to minimize the end-to-end latency. We implement Thoth and evaluate it on vLLM, a state-of-the-art LLM inference system and Faiss, a state-of-the-art vector database. The experimental results show that Thoth reduces the time to first token (TTFT) by up to 4x and improves the throughput by up to 2.1x compared to vLLM integrated with Faiss.

This paper focuses on Code Generation task that aims at generating relevant code fragments according to given natural language descriptions. In the process of software development, developers often encounter two scenarios. One is requested to write a large amount of repetitive and low-technical code for implementing common functionalities. The other is writing code that depends on specific task requirements, which may necessitate the use of external resources such as documentation or other tools. Therefore, code generation has received a lot of attention among academia and industry for assisting developers in coding. In fact, it has also been one of the key concerns in the field of software engineering to make machines understand users' requirements and write programs on their own. The recent development of deep learning techniques especially pre-training models make the code generation task achieve promising performance. In this paper, we systematically review the current work on deep learning-based code generation and classify the current deep learning-based code generation methods into three categories: methods based on code features, methods incorporated with retrieval, and methods incorporated with post-processing. The first category refers to the methods that use deep learning algorithms for code generation based on code features, and the second and third categories of methods improve the performance of the methods in the first category. In this paper, the existing research results of each category of methods are systematically reviewed, summarized and commented. Besides, the paper summarizes and analyzes the corpus and the popular evaluation metrics used in the existing code generation work. Finally, the paper summarizes the overall literature review and provides a prospect on future research directions worthy of attention.

Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

北京阿比特科技有限公司