亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data videos are becoming increasingly popular in society and academia. Yet little is known about how to create endings that strengthen a lasting impression and persuasion. To fulfill the gap, this work aims to develop guidelines for data video endings by drawing inspiration from cinematic arts. To contextualize cinematic endings in data videos, 111 film endings and 105 data video endings are first analyzed to identify four common styles using the framework of ending punctuation marks. We conducted expert interviews (N=11) and formulated 20 guidelines for creating cinematic endings in data videos. To validate our guidelines, we conducted a user study where 24 participants were invited to design endings with and without our guidelines, which are evaluated by experts and the general public. The participants praise the clarity and usability of the guidelines, and results show that the endings with guidelines are perceived to be more understandable, impressive, and reflective.

相關內容

電影是一(yi)種視(shi)聽媒介,利用膠卷、錄像(xiang)帶或數位(wei)媒體將影像(xiang)和聲音捕捉,再(zai)加(jia)上后期的(de)編輯工作而(er)成。

Application Tracking Systems (ATS) have allowed talent managers, recruiters, and college admissions committees to process large volumes of potential candidate applications efficiently. Traditionally, this screening process was conducted manually, creating major bottlenecks due to the quantity of applications and introducing many instances of human bias. The advent of large language models (LLMs) such as ChatGPT and the potential of adopting methods to current automated application screening raises additional bias and fairness issues that must be addressed. In this project, we wish to identify and quantify the instances of social bias in ChatGPT and other OpenAI LLMs in the context of candidate screening in order to demonstrate how the use of these models could perpetuate existing biases and inequalities in the hiring process.

Social media platforms moderate content for each user by incorporating the outputs of both platform-wide content moderation systems and, in some cases, user-configured personal moderation preferences. However, it is unclear (1) how end users perceive the choices and affordances of different kinds of personal content moderation tools, and (2) how the introduction of personalization impacts user perceptions of platforms' content moderation responsibilities. This paper investigates end users' perspectives on personal content moderation tools by conducting an interview study with a diverse sample of 24 active social media users. We probe interviewees' preferences using simulated personal moderation interfaces, including word filters, sliders for toxicity levels, and boolean toxicity toggles. We also examine the labor involved for users in choosing moderation settings and present users' attitudes about the roles and responsibilities of social media platforms and other stakeholders towards moderation. We discuss how our findings can inform design solutions to improve transparency and controllability in personal content moderation tools.

Comprehending characters' personalities is a crucial aspect of story reading. As readers engage with a story, their understanding of a character evolves based on new events and information; and multiple fine-grained aspects of personalities can be perceived. This leads to a natural problem of situated and fine-grained personality understanding. The problem has not been studied in the NLP field, primarily due to the lack of appropriate datasets mimicking the process of book reading. We present the first labeled dataset PersoNet for this problem. Our novel annotation strategy involves annotating user notes from online reading apps as a proxy for the original books. Experiments and human studies indicate that our dataset construction is both efficient and accurate; and our task heavily relies on long-term context to achieve accurate predictions for both machines and humans. The dataset is available at //github.com/Gorov/personet_acl23.

Peer review is an integral component of scientific research. The quality of peer review, and consequently the published research, depends to a large extent on the ability to recruit adequate reviewers for submitted papers. However, finding such reviewers is an increasingly difficult task due to several factors, such as the continuous increase both in the production of scientific papers and the workload of scholars. To mitigate these challenges, solutions for automated association of papers with "well matching" reviewers - the task often referred to as reviewer assignment problem (RAP) - have been the subject of research for thirty years now. Even though numerous solutions have been suggested, to our knowledge, a recent systematic synthesis of the RAP-related literature is missing. To fill this gap and support further RAP-related research, in this paper, we present a scoping review of computational approaches for addressing RAP. Following the latest methodological guidance for scoping reviews, we have collected recent literature on RAP from three databases (Scopus, Google Scholar, DBLP) and, after applying the eligibility criteria, retained 26 studies for extracting and synthesising data on several aspects of RAP research including: i) the overall framing of and approach to RAP; ii) the criteria for reviewer selection; iii) the modelling of candidate reviewers and submissions; iv) the computational methods for matching reviewers and submissions; and v) the methods for evaluating the performance of the proposed solutions. The paper summarises and discusses the findings for each of the aforementioned aspects of RAP research and suggests future research directions.

Being able to provide explanations for a model's decision has become a central requirement for the development, deployment, and adoption of machine learning models. However, we are yet to understand what explanation methods can and cannot do. How do upstream factors such as data, model prediction, hyperparameters, and random initialization influence downstream explanations? While previous work raised concerns that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we study the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors, i.e., on hyperparameters and inputs used to generate saliency-based Es or Ys. Our results suggest that the relationships between E and Y is far from ideal. In fact, the gap between 'ideal' case only increase in higher-performing models -- models that are likely to be deployed. Our work is a promising first step towards providing a quantitative measure of the relationship between E and Y, which could also inform the future development of methods for E with a quantitative metric.

Context: Web APIs are one of the most used ways to expose application functionality on the Web, and their understandability is important for efficiently using the provided resources. While many API design rules exist, empirical evidence for the effectiveness of most rules is lacking. Objective: We therefore wanted to study 1) the impact of RESTful API design rules on understandability, 2) if rule violations are also perceived as more difficult to understand, and 3) if demographic attributes like REST-related experience have an influence on this. Method: We conducted a controlled Web-based experiment with 105 participants, from both industry and academia and with different levels of experience. Based on a crossover design, we studied 12 design rules using API snippets in two complementary versions: one that adhered to a "rule" and one that was a "violation" of this rule. Participants answered comprehension questions and rated the perceived difficulty. Results: For 11 of the 12 rules, we found that "violation" performed significantly worse than "rule" for the comprehension tasks. Regarding the subjective ratings, we found significant differences for 9 of the 12 rules, meaning that most violations were subjectively rated as more difficult to understand. Demographics played no role in the comprehension performance for "violation". Conclusions: Our results provide first empirical evidence for the importance of following design rules to improve the understandability of Web APIs, which is important for researchers, practitioners, and educators.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司