亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social media platforms moderate content for each user by incorporating the outputs of both platform-wide content moderation systems and, in some cases, user-configured personal moderation preferences. However, it is unclear (1) how end users perceive the choices and affordances of different kinds of personal content moderation tools, and (2) how the introduction of personalization impacts user perceptions of platforms' content moderation responsibilities. This paper investigates end users' perspectives on personal content moderation tools by conducting an interview study with a diverse sample of 24 active social media users. We probe interviewees' preferences using simulated personal moderation interfaces, including word filters, sliders for toxicity levels, and boolean toxicity toggles. We also examine the labor involved for users in choosing moderation settings and present users' attitudes about the roles and responsibilities of social media platforms and other stakeholders towards moderation. We discuss how our findings can inform design solutions to improve transparency and controllability in personal content moderation tools.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · MoDELS · AIM · Twitter · 值域 ·
2023 年 7 月 3 日

Opinion dynamics is an important and very active area of research that delves into the complex processes through which individuals form and modify their opinions within a social context. The ability to comprehend and unravel the mechanisms that drive opinion formation is of great significance for predicting a wide range of social phenomena such as political polarization, the diffusion of misinformation, the formation of public consensus, and the emergence of collective behaviors. In this paper, we aim to contribute to that field by introducing a novel mathematical model that specifically accounts for the influence of social media networks on opinion dynamics. With the rise of platforms such as Twitter, Facebook, and Instagram and many others, social networks have become significant arenas where opinions are shared, discussed, and potentially altered. To this aim after an analytical construction of our new model and through incorporation of real-life data from Twitter, we calibrate the model parameters to accurately reflect the dynamics that unfold in social media, showing in particular the role played by the so-called influencers in driving individual opinions towards predetermined directions.

Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at //zhongjinluo.github.io/SketchMetaFace/.

It is important that consumers and regulators can verify the provenance of large neural models to evaluate their capabilities and risks. We introduce the concept of a "Proof-of-Training-Data": any protocol that allows a model trainer to convince a Verifier of the training data that produced a set of model weights. Such protocols could verify the amount and kind of data and compute used to train the model, including whether it was trained on specific harmful or beneficial data sources. We explore efficient verification strategies for Proof-of-Training-Data that are compatible with most current large-model training procedures. These include a method for the model-trainer to verifiably pre-commit to a random seed used in training, and a method that exploits models' tendency to temporarily overfit to training data in order to detect whether a given data-point was included in training. We show experimentally that our verification procedures can catch a wide variety of attacks, including all known attacks from the Proof-of-Learning literature.

We consider the problem of learning personalized treatment policies that are externally valid or generalizable: they perform well in other target populations besides the experimental (or training) population from which data are sampled. We first show that welfare-maximizing policies for the experimental population are robust to shifts in the distribution of outcomes (but not characteristics) between the experimental and target populations. We then develop new methods for learning policies that are robust to shifts in outcomes and characteristics. In doing so, we highlight how treatment effect heterogeneity within the experimental population affects the generalizability of policies. Our methods may be used with experimental or observational data (where treatment is endogenous). Many of our methods can be implemented with linear programming.

As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we provide a comprehensive review of urban spatial-temporal prediction and propose a unified storage format for spatial-temporal data called atomic files. We also propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. Using LibCity, we conducted a series of experiments to validate the effectiveness of different models and components, and we summarized promising future technology developments and research directions for spatial-temporal prediction. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.

Increasingly popular home assistants are widely utilized as the central controller for smart home devices. However, current designs heavily rely on voice interfaces with accessibility and usability issues; some latest ones are equipped with additional cameras and displays, which are costly and raise privacy concerns. These concerns jointly motivate Beyond-Voice, a novel deep-learning-driven acoustic sensing system that allows commodity home assistant devices to track and reconstruct hand poses continuously. It transforms the home assistant into an active sonar system using its existing onboard microphones and speakers. We feed a high-resolution range profile to the deep learning model that can analyze the motions of multiple body parts and predict the 3D positions of 21 finger joints, bringing the granularity for acoustic hand tracking to the next level. It operates across different environments and users without the need for personalized training data. A user study with 11 participants in 3 different environments shows that Beyond-Voice can track joints with an average mean absolute error of 16.47mm without any training data provided by the testing subject.

Early diagnosis of mental disorders and intervention can facilitate the prevention of severe injuries and the improvement of treatment results. Using social media and pre-trained language models, this study explores how user-generated data can be used to predict mental disorder symptoms. Our study compares four different BERT models of Hugging Face with standard machine learning techniques used in automatic depression diagnosis in recent literature. The results show that new models outperform the previous approach with an accuracy rate of up to 97%. Analyzing the results while complementing past findings, we find that even tiny amounts of data (like users' bio descriptions) have the potential to predict mental disorders. We conclude that social media data is an excellent source of mental health screening, and pre-trained models can effectively automate this critical task.

Social mediator robots facilitate human-human interactions by producing behavior strategies that positively influence how humans interact with each other in social settings. As robots for social mediation gain traction in the field of human-human-robot interaction, their ability to "understand" the humans in their environments becomes crucial. This objective requires models of human understanding that consider multiple humans in an interaction as a collective entity and represent the group dynamics that exist among its members. Group dynamics are defined as the influential actions, processes, and changes that occur within and between group interactants. Since an individual's behavior may be deeply influenced by their interactions with other group members, the social dynamics existing within a group can influence the behaviors, attitudes, and opinions of each individual and the group as a whole. Therefore, models of group dynamics are critical for a social mediator robot to be effective in its role. In this paper, we survey existing models of group dynamics and categorize them into models of social dominance, affect, social cohesion, conflict resolution, and engagement. We highlight the multimodal features these models utilize, and emphasize the importance of capturing the interpersonal aspects of a social interaction. Finally, we make a case for models of relational affect as an approach that may be able to capture a representation of human-human interactions that can be useful for social mediation.

Along with the increasing availability of health data has come the rise of data-driven models to inform decision-making and policy. These models have the potential to benefit both patients and health care providers but can also exacerbate health inequities. Existing "algorithmic fairness" methods for measuring and correcting model bias fall short of what is needed for health policy in two key ways. First, methods typically focus on a single grouping along which discrimination may occur rather than considering multiple, intersecting groups. Second, in clinical applications, risk prediction is typically used to guide treatment, creating distinct statistical issues that invalidate most existing techniques. We present summary unfairness metrics that build on existing techniques in "counterfactual fairness" to address both challenges. We also develop a complete framework of estimation and inference tools for our metrics, including the unfairness value ("u-value"), used to determine the relative extremity of unfairness, and standard errors and confidence intervals employing an alternative to the standard bootstrap. We demonstrate application of our framework to a COVID-19 risk prediction model deployed in a major Midwestern health system.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

北京阿比特科技有限公司