亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Early diagnosis of mental disorders and intervention can facilitate the prevention of severe injuries and the improvement of treatment results. Using social media and pre-trained language models, this study explores how user-generated data can be used to predict mental disorder symptoms. Our study compares four different BERT models of Hugging Face with standard machine learning techniques used in automatic depression diagnosis in recent literature. The results show that new models outperform the previous approach with an accuracy rate of up to 97%. Analyzing the results while complementing past findings, we find that even tiny amounts of data (like users' bio descriptions) have the potential to predict mental disorders. We conclude that social media data is an excellent source of mental health screening, and pre-trained models can effectively automate this critical task.

相關內容

Segmenting cells and tracking their motion over time is a common task in biomedical applications. However, predicting accurate instance-wise segmentation and cell motions from microscopy imagery remains a challenging task. Using microstructured environments for analyzing single cells in a constant flow of media adds additional complexity. While large-scale labeled microscopy datasets are available, we are not aware of any large-scale dataset, including both cells and microstructures. In this paper, we introduce the trapped yeast cell (TYC) dataset, a novel dataset for understanding instance-level semantics and motions of cells in microstructures. We release $105$ dense annotated high-resolution brightfield microscopy images, including about $19$k instance masks. We also release $261$ curated video clips composed of $1293$ high-resolution microscopy images to facilitate unsupervised understanding of cell motions and morphology. TYC offers ten times more instance annotations than the previously largest dataset, including cells and microstructures. Our effort also exceeds previous attempts in terms of microstructure variability, resolution, complexity, and capturing device (microscopy) variability. We facilitate a unified comparison on our novel dataset by introducing a standardized evaluation strategy. TYC and evaluation code are publicly available under CC BY 4.0 license.

The motivation for this study came from the task of analysing the kinetic behavior of single molecules in a living cell based on Single Molecule Localization Microscopy. Given measurements of both the motion of clusters and molecules, the main task consists in detecting if a molecule belongs to a cluster. While the exact size of the clusters is usually unknown, upper bounds are available. In this study, we simulate the cluster movement by a Brownian motion and those of the particles by a Gaussian mixture model with two modes depending on the position of the particle within or outside a cluster. We propose various variational models to detect if a particle lies within a cluster based on the Wasserstein and maximum mean discrepancy distances between measures. We compare the performance of the proposed models for simulated data.

Deep learning continues to rapidly evolve and is now demonstrating remarkable potential for numerous medical prediction tasks. However, realizing deep learning models that generalize across healthcare organizations is challenging. This is due, in part, to the inherent siloed nature of these organizations and patient privacy requirements. To address this problem, we illustrate how split learning can enable collaborative training of deep learning models across disparate and privately maintained health datasets, while keeping the original records and model parameters private. We introduce a new privacy-preserving distributed learning framework that offers a higher level of privacy compared to conventional federated learning. We use several biomedical imaging and electronic health record (EHR) datasets to show that deep learning models trained via split learning can achieve highly similar performance to their centralized and federated counterparts while greatly improving computational efficiency and reducing privacy risks.

Individualized treatment rules (ITRs) are deterministic decision rules that recommend treatments to individuals based on their characteristics. Though ubiquitous in medicine, ITRs are hardly ever evaluated in randomized controlled trials. To evaluate ITRs from observational data, we introduce a new probabilistic model and distinguish two situations: i) the situation of a newly developed ITR, where data are from a population where no patient implements the ITR, and ii) the situation of a partially implemented ITR, where data are from a population where the ITR is implemented in some unidentified patients. In the former situation, we propose a procedure to explore the impact of an ITR under various implementation schemes. In the latter situation, on top of the fundamental problem of causal inference, we need to handle an additional latent variable denoting implementation. To evaluate ITRs in this situation, we propose an estimation procedure that relies on an expectation-maximization algorithm. In Monte Carlo simulations our estimators appear unbiased with confidence intervals achieving nominal coverage. We illustrate our approach on the MIMIC-III database, focusing on ITRs for dialysis initiation in patients with acute kidney injury.

Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: //github.com/Zhijin-Ge/STM.

In human-robot collaboration, unintentional physical contacts occur in the form of collisions and clamping, which must be detected and classified separately for a reaction. If certain collision or clamping situations are misclassified, reactions might occur that make the true contact case more dangerous. This work analyzes data-driven modeling based on physically modeled features like estimated external forces for clamping and collision classification with a real parallel robot. The prediction reliability of a feedforward neural network is investigated. Quantification of the classification uncertainty enables the distinction between safe versus unreliable classifications and optimal reactions like a retraction movement for collisions, structure opening for the clamping joint, and a fallback reaction in the form of a zero-g mode. This hypothesis is tested with experimental data of clamping and collision cases by analyzing dangerous misclassifications and then reducing them by the proposed uncertainty quantification. Finally, it is investigated how the approach of this work influences correctly classified clamping and collision scenarios.

Single-particle traces of the diffusive motion of molecules, cells, or animals are by-now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine system parameters. The tools used in this endeavor are currently revolutionized by modern machine-learning techniques. In this Perspective we provide an overview over recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the Anomalous-Diffusion-Challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

In healthcare, the role of AI is continually evolving and understanding the challenges its introduction poses on relationships between healthcare providers and patients will require a regulatory and behavioural approach that can provide a guiding base for all users involved. In this paper, we present ACIPS (Acceptability, Comfortability, Informed Consent, Privacy, and Security), a framework for evaluating patient response to the introduction of AI-enabled digital technologies in healthcare settings. We justify the need for ACIPS with a general introduction of the challenges with and perceived relevance of AI in human-welfare centered fields, with an emphasis on the provision of healthcare. The framework is composed of five principles that measure the perceptions of acceptability, comfortability, informed consent, privacy, and security patients hold when learning how AI is used in their healthcare. We propose that the tenets composing this framework can be translated into guidelines outlining the proper use of AI in healthcare while broadening the limited understanding of this topic.

Mounting evidence underscores the prevalent hierarchical organization of cancer tissues. At the foundation of this hierarchy reside cancer stem cells, a subset of cells endowed with the pivotal role of engendering the entire cancer tissue through cell differentiation. In recent times, substantial attention has been directed towards the phenomenon of cancer cell plasticity, where the dynamic interconversion between cancer stem cells and non-stem cancer cells has garnered significant interest. Since the task of detecting cancer cell plasticity from empirical data remains a formidable challenge, we propose a Bayesian statistical framework designed to infer phenotypic plasticity within cancer cells, utilizing temporal data on cancer stem cell proportions. Our approach is grounded in a stochastic model, adept at capturing the dynamic behaviors of cells. Leveraging Bayesian analysis, we explore the moment equation governing cancer stem cell proportions, derived from the Kolmogorov forward equation of our stochastic model. With improved Euler method for ordinary differential equations, a new statistical method for parameter estimation in nonlinear ordinary differential equations models is developed, which also provides novel ideas for the study of compositional data. Extensive simulations robustly validate the efficacy of our proposed method. To further corroborate our findings, we apply our approach to analyze published data from SW620 colon cancer cell lines. Our results harmonize with \emph{in situ} experiments, thereby reinforcing the utility of our method in discerning and quantifying phenotypic plasticity within cancer cells.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

北京阿比特科技有限公司