Machine learning tasks over image databases often generate masks that annotate image content (e.g., saliency maps, segmentation maps) and enable a variety of applications (e.g., determine if a model is learning spurious correlations or if an image was maliciously modified to mislead a model). While queries that retrieve examples based on mask properties are valuable to practitioners, existing systems do not support such queries efficiently. In this paper, we formalize the problem and propose a system, MaskSearch, that focuses on accelerating queries over databases of image masks. MaskSearch leverages a novel indexing technique and an efficient filter-verification query execution framework. Experiments on real-world datasets with our prototype show that MaskSearch, using indexes approximately 5% the size of the data, accelerates individual queries by up to two orders of magnitude and consistently outperforms existing methods on various multi-query workloads that simulate dataset exploration and analysis processes.
Correlated time series analysis plays an important role in many real-world industries. Learning an efficient representation of this large-scale data for further downstream tasks is necessary but challenging. In this paper, we propose a time-step-level representation learning framework for individual instances via bootstrapped spatiotemporal representation prediction. We evaluated the effectiveness and flexibility of our representation learning framework on correlated time series forecasting and cold-start transferring the forecasting model to new instances with limited data. A linear regression model trained on top of the learned representations demonstrates our model performs best in most cases. Especially compared to representation learning models, we reduce the RMSE, MAE, and MAPE by 37%, 49%, and 48% on the PeMS-BAY dataset, respectively. Furthermore, in real-world metro passenger flow data, our framework demonstrates the ability to transfer to infer future information of new cold-start instances, with gains of 15%, 19%, and 18%. The source code will be released under the GitHub //github.com/bonaldli/Spatiotemporal-TS-Representation-Learning
Diffusion models have emerged as the de-facto technique for image generation, yet they entail significant computational overhead, hindering the technique's broader application in the research community. We propose a prior-based denoising training framework, the first to incorporate the pre-train and fine-tune paradigm into the diffusion model training process, which substantially improves training efficiency and shows potential in facilitating various downstream tasks. Our approach centers on masking a high proportion (e.g., up to 90%) of the input image and employing masked score matching to denoise the visible areas, thereby guiding the diffusion model to learn more salient features from training data as prior knowledge. By utilizing this masked learning process in a pre-training stage, we efficiently train the ViT-based diffusion model on CelebA-HQ 256x256 in the pixel space, achieving a 4x acceleration and enhancing the quality of generated images compared to DDPM. Moreover, our masked pre-training technique is universally applicable to various diffusion models that directly generate images in the pixel space and facilitates learning pre-trained models with excellent generalizability: a diffusion model pre-trained on VGGFace2 attains a 46% quality improvement through fine-tuning with merely 10% local data. Our code is available at //github.com/jiachenlei/maskdm.
Online video streaming has fundamental limitations on the transmission bandwidth and computational capacity and super-resolution is a promising potential solution. However, applying existing video super-resolution methods to online streaming is non-trivial. Existing video codecs and streaming protocols (\eg, WebRTC) dynamically change the video quality both spatially and temporally, which leads to diverse and dynamic degradations. Furthermore, online streaming has a strict requirement for latency that most existing methods are less applicable. As a result, this paper focuses on the rarely exploited problem setting of online streaming video super resolution. To facilitate the research on this problem, a new benchmark dataset named LDV-WebRTC is constructed based on a real-world online streaming system. Leveraging the new benchmark dataset, we proposed a novel method specifically for online video streaming, which contains a convolution and Look-Up Table (LUT) hybrid model to achieve better performance-latency trade-off. To tackle the changing degradations, we propose a mixture-of-expert-LUT module, where a set of LUT specialized in different degradations are built and adaptively combined to handle different degradations. Experiments show our method achieves 720P video SR around 100 FPS, while significantly outperforms existing LUT-based methods and offers competitive performance compared to efficient CNN-based methods.
Search-based software testing (SBT) is an effective and efficient approach for testing automated driving systems (ADS). However, testing pipelines for ADS testing are particularly challenging as they involve integrating complex driving simulation platforms and establishing communication protocols and APIs with the desired search algorithm. This complexity prevents a wide adoption of SBT and thorough empirical comparative experiments with different simulators and search approaches. We present OpenSBT, an open-source, modular and extensible framework to facilitate the SBT of ADS. With OpenSBT, it is possible to integrate simulators with an embedded system under test, search algorithms and fitness functions for testing. We describe the architecture and show the usage of our framework by applying different search algorithms for testing Automated Emergency Braking Systems in CARLA as well in the high-fidelity Prescan simulator in collaboration with our industrial partner DENSO. OpenSBT is available at //git.fortiss.org/opensbt.
The analysis of multivariate time series data is challenging due to the various frequencies of signal changes that can occur over both short and long terms. Furthermore, standard deep learning models are often unsuitable for such datasets, as signals are typically sampled at different rates. To address these issues, we introduce MultiWave, a novel framework that enhances deep learning time series models by incorporating components that operate at the intrinsic frequencies of signals. MultiWave uses wavelets to decompose each signal into subsignals of varying frequencies and groups them into frequency bands. Each frequency band is handled by a different component of our model. A gating mechanism combines the output of the components to produce sparse models that use only specific signals at specific frequencies. Our experiments demonstrate that MultiWave accurately identifies informative frequency bands and improves the performance of various deep learning models, including LSTM, Transformer, and CNN-based models, for a wide range of applications. It attains top performance in stress and affect detection from wearables. It also increases the AUC of the best-performing model by 5% for in-hospital COVID-19 mortality prediction from patient blood samples and for human activity recognition from accelerometer and gyroscope data. We show that MultiWave consistently identifies critical features and their frequency components, thus providing valuable insights into the applications studied.
Online video streaming has fundamental limitations on the transmission bandwidth and computational capacity and super-resolution is a promising potential solution. However, applying existing video super-resolution methods to online streaming is non-trivial. Existing video codecs and streaming protocols (\eg, WebRTC) dynamically change the video quality both spatially and temporally, which leads to diverse and dynamic degradations. Furthermore, online streaming has a strict requirement for latency that most existing methods are less applicable. As a result, this paper focuses on the rarely exploited problem setting of online streaming video super resolution. To facilitate the research on this problem, a new benchmark dataset named LDV-WebRTC is constructed based on a real-world online streaming system. Leveraging the new benchmark dataset, we proposed a novel method specifically for online video streaming, which contains a convolution and Look-Up Table (LUT) hybrid model to achieve better performance-latency trade-off. To tackle the changing degradations, we propose a mixture-of-expert-LUT module, where a set of LUT specialized in different degradations are built and adaptively combined to handle different degradations. Experiments show our method achieves 720P video SR around 100 FPS, while significantly outperforms existing LUT-based methods and offers competitive performance compared to efficient CNN-based methods.
Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.