We present an analytical framework for the channel estimation and the data detection in massive multiple-input multiple-output uplink systems with 1-bit analog-to-digital converters (ADCs) and i.i.d. Rayleigh fading. First, we provide closed-form expressions of the mean squared error (MSE) of the channel estimation considering the state-of-the-art linear minimum MSE estimator and the class of scaled least-squares estimators. For the data detection, we provide closed-form expressions of the expected value and the variance of the estimated symbols when maximum ratio combining is adopted, which can be exploited to efficiently implement minimum distance detection and, potentially, to design the set of transmit symbols. Our analytical findings explicitly depend on key system parameters such as the signal-to-noise ratio (SNR), the number of user equipments, and the pilot length, thus enabling a precise characterization of the performance of the channel estimation and the data detection with 1-bit ADCs. The proposed analysis highlights a fundamental SNR trade-off, according to which operating at the right noise level significantly enhances the system performance.
In this paper, we investigate the secure rate-splitting for the two-user multiple-input multiple-output (MIMO) broadcast channel with imperfect channel state information at the transmitter (CSIT) and a multiple-antenna jammer, where each receiver has equal number of antennas and the jammer has perfect channel state information (CSI). Specifically, we design the secure rate-splitting multiple-access in this scenario, where the security of splitted private and common messages is ensured by precoder design with joint nulling and aligning the leakage information, regarding to different antenna configurations. As a result, we show that the sum-secure degrees-of-freedom (SDoF) achieved by secure rate-splitting outperforms that by conventional zero-forcing. Therefore, we validate the superiority of rate-splitting for the secure purpose in the two-user MIMO broadcast channel with imperfect CSIT and a jammer.
This paper considers the fundamental power allocation problem in cell-free massive mutiple-input and multiple-output (MIMO) systems which aims at maximizing the total energy efficiency (EE) under a sum power constraint at each access point (AP) and a quality-of-service (QoS) constraint at each user. Existing solutions for this optimization problem are based on solving a sequence of second-order cone programs (SOCPs), whose computational complexity scales dramatically with the network size. Therefore, they are not implementable for practical large-scale cell-free massive MIMO systems. To tackle this issue, we propose an iterative power control algorithm based on the frame work of an accelerated projected gradient (APG) method. In particular, each iteration of the proposed method is done by simple closed-form expressions, where a penalty method is applied to bring constraints into the objective in the form of penalty functions. Finally, the convergence of the proposed algorithm is analytically proved and numerically compared to the known solution based on SOCP. Simulations results demonstrate that our proposed power control algorithm can achieve the same EE as the existing SOCPs-based method, but more importantly, its run time is much lower (one to two orders of magnitude reduction in run time, compared to the SOCPs-based approaches).
It is an experimental design problem in which there are two Poisson sources with two possible and known rates, and one counter. Through a switch, the counter can observe the sources individually or the counts can be combined so that the counter observes the sum of the two. The sensor scheduling problem is to determine an optimal proportion of the available time to be allocated toward individual and joint sensing, under a total time constraint. Two different metrics are used for optimization: mutual information between the sources and the observed counts, and probability of detection for the associated source detection problem. Our results, which are primarily computational, indicate similar but not identical results under the two cost functions.
Extremely large-scale multiple-input-multiple-output (XL-MIMO) with hybrid precoding is a promising technique to meet the high data rate requirements for future 6G communications. To realize efficient hybrid precoding, it is essential to obtain accurate channel state information. Existing channel estimation algorithms with low pilot overhead heavily rely on the channel sparsity in the angle domain, which is achieved by the classical far-field planar wavefront assumption. However, due to the non-negligible near-field spherical wavefront property in XL-MIMO systems, this channel sparsity in the angle domain is not available anymore, and thus existing far-field channel estimation schemes will suffer from severe performance loss. To address this problem, in this paper we study the near-field channel estimation by exploiting the polar-domain sparse representation of the near-field XL-MIMO channel. Specifically, unlike the classical angle-domain representation that only considers the angle information of the channel, we propose a new polar-domain representation, which simultaneously accounts for both the angle and distance information. In this way, the near-field channel also exhibits sparsity in the polar domain. By exploiting the channel sparsity in the polar domain, we propose the on-grid and off-grid near-field channel estimation schemes for XL-MIMO. Firstly, an on-grid polar-domain simultaneous orthogonal matching pursuit (P-SOMP) algorithm is proposed to efficiently estimate the near-field channel. Furthermore, to solve the resolution limitation of the on-grid P-SOMP algorithm, an off-grid polar-domain simultaneous iterative gridless weighted (P-SIGW) algorithm is proposed to improve the estimation accuracy, where the parameters of the near-field channel are directly estimated. Finally, numerical results are provided to verify the effectiveness of the proposed schemes.
This paper considers device-free sensing in an orthogonal frequency division multiplexing (OFDM) cellular network to enable integrated sensing and communication (ISAC). A novel two-phase sensing framework is proposed to localize the passive targets that cannot transmit/receive reference signals to/from the base stations (BSs), where the ranges of the targets are estimated based on their reflected OFDM signals to the BSs in Phase I, and the location of each target is estimated based on its ranges to different BSs in Phase II. Specifically, in Phase I, we design a model-free range estimation approach by leveraging the OFDM channel estimation technique for determining the delay values of all the two-way BS-target-BS paths, which does not rely on any BS-target channel model. In Phase II, we reveal that ghost targets may be falsely detected in some cases as all the targets reflect the same signals to the BSs, which thus do not know how to match each estimated range with the right target. Interestingly, we show that the above data association issue is not a fundamental limitation for device-free sensing: under the ideal case of perfect range estimation in Phase I, the probability for ghost targets to exist is proved to be negligible when the targets are randomly located. Moreover, under the practical case of imperfect range estimation in Phase I, we propose an efficient algorithm for joint data association and target localization in Phase II. Numerical results show that our proposed two-phase framework can achieve very high accuracy in the localization of passive targets, which increases with the system bandwidth.
In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.
We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.
High hardware cost and high power consumption of massive multiple-input and multiple output (MIMO) are two challenges for the future wireless communications including beyond fifth generation (B5G) and sixth generation (6G). Adopting the low-resolution analog-to-digital converter (ADC) is viewed as a promising solution. Additionally, the direction of arrival (DOA) estimation is an indispensable technology for beam alignment and tracking in massive MIMO systems. Thus, in this paper, the performance of DOA estimation with mixed-ADC structure is firstly investigated. The Cramer-Rao lower bound (CRLB) for this architecture is derived based on the additive quantization noise model. Eventually, a performance loss factor and the associated energy efficiency factor is defined for analysis in detail. Simulation results show that the mixed-ADC architecture can strike a good balance among performance loss, circuit cost and energy efficiency. More importantly, just a few bits (up to 4 bits) of low-resolution ADCs can achieve a satisfactory performance for DOA measurement.
We propose a joint channel estimation and signal detection approach for the uplink non-orthogonal multiple access using unsupervised machine learning. We apply the Gaussian mixture model to cluster the received signals, and accordingly optimize the decision regions to enhance the symbol error rate (SER). We show that, when the received powers of the users are sufficiently different, the proposed clustering-based approach achieves an SER performance on a par with that of the conventional maximum-likelihood detector with full channel state information. However, unlike the proposed approach, the maximum-likelihood detector requires the transmission of a large number of pilot symbols to accurately estimate the channel. The accuracy of the utilized clustering algorithm depends on the number of the data points available at the receiver. Therefore, there exists a tradeoff between accuracy and block length. We provide a comprehensive performance analysis of the proposed approach as well as deriving a theoretical bound on its SER performance as a function of the block length. Our simulation results corroborate the effectiveness of the proposed approach and verify that the calculated theoretical bound can predict the SER performance of the proposed approach well.
Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.