亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robust obstacle avoidance is one of the critical steps for successful goal-driven indoor navigation tasks.Due to the obstacle missing in the visual image and the possible missed detection issue, visual image-based obstacle avoidance techniques still suffer from unsatisfactory robustness. To mitigate it, in this paper, we propose a novel implicit obstacle map-driven indoor navigation framework for robust obstacle avoidance, where an implicit obstacle map is learned based on the historical trial-and-error experience rather than the visual image. In order to further improve the navigation efficiency, a non-local target memory aggregation module is designed to leverage a non-local network to model the intrinsic relationship between the target semantic and the target orientation clues during the navigation process so as to mine the most target-correlated object clues for the navigation decision. Extensive experimental results on AI2-Thor and RoboTHOR benchmarks verify the excellent obstacle avoidance and navigation efficiency of our proposed method. The core source code is available at //github.com/xwaiyy123/object-navigation.

相關內容

Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to maintain. We introduce the 4D Gaussian Splatting (4D-GS) to achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency. An efficient deformation field is constructed to model both Gaussian motions and shape deformations. Different adjacent Gaussians are connected via a HexPlane to produce more accurate position and shape deformations. Our 4D-GS method achieves real-time rendering under high resolutions, 70 FPS at a 800$\times$800 resolution on an RTX 3090 GPU, while maintaining comparable or higher quality than previous state-of-the-art methods. More demos and code are available at //guanjunwu.github.io/4dgs/.

Safe autonomous driving critically depends on how well the ego-vehicle can predict the trajectories of neighboring vehicles. To this end, several trajectory prediction algorithms have been presented in the existing literature. Many of these approaches output a multi-modal distribution of obstacle trajectories instead of a single deterministic prediction to account for the underlying uncertainty. However, existing planners cannot handle the multi-modality based on just sample-level information of the predictions. With this motivation, this paper proposes a trajectory optimizer that can leverage the distributional aspects of the prediction in a computationally tractable and sample-efficient manner. Our optimizer can work with arbitrarily complex distributions and thus can be used with output distribution represented as a deep neural network. The core of our approach is built on embedding distribution in Reproducing Kernel Hilbert Space (RKHS), which we leverage in two ways. First, we propose an RKHS embedding approach to select probable samples from the obstacle trajectory distribution. Second, we rephrase chance-constrained optimization as distribution matching in RKHS and propose a novel sampling-based optimizer for its solution. We validate our approach with hand-crafted and neural network-based predictors trained on real-world datasets and show improvement over the existing stochastic optimization approaches in safety metrics.

Vehicle-to-Everything (V2X) collaborative perception is crucial for autonomous driving. However, achieving high-precision V2X perception requires a significant amount of annotated real-world data, which can always be expensive and hard to acquire. Simulated data have raised much attention since they can be massively produced at an extremely low cost. Nevertheless, the significant domain gap between simulated and real-world data, including differences in sensor type, reflectance patterns, and road surroundings, often leads to poor performance of models trained on simulated data when evaluated on real-world data. In addition, there remains a domain gap between real-world collaborative agents, e.g. different types of sensors may be installed on autonomous vehicles and roadside infrastructures with different extrinsics, further increasing the difficulty of sim2real generalization. To take full advantage of simulated data, we present a new unsupervised sim2real domain adaptation method for V2X collaborative detection named Decoupled Unsupervised Sim2Real Adaptation (DUSA). Our new method decouples the V2X collaborative sim2real domain adaptation problem into two sub-problems: sim2real adaptation and inter-agent adaptation. For sim2real adaptation, we design a Location-adaptive Sim2Real Adapter (LSA) module to adaptively aggregate features from critical locations of the feature map and align the features between simulated data and real-world data via a sim/real discriminator on the aggregated global feature. For inter-agent adaptation, we further devise a Confidence-aware Inter-agent Adapter (CIA) module to align the fine-grained features from heterogeneous agents under the guidance of agent-wise confidence maps. Experiments demonstrate the effectiveness of the proposed DUSA approach on unsupervised sim2real adaptation from the simulated V2XSet dataset to the real-world DAIR-V2X-C dataset.

Robots must make and break contact with the environment to perform useful tasks, but planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver and present simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20-degree-of-freedom bi-manual manipulation task. Video and code are available at //idto.github.io.

Pilot contamination is a critical issue in distributed massive MIMO networks, where the reuse of pilot sequences due to limited availability of orthogonal pilots for channel estimation leads to performance degradation. In this work, we propose a novel distributed pilot assignment scheme to effectively mitigate the impact of pilot contamination. Our proposed scheme not only reduces signaling overhead, but it also enhances fault-tolerance. Extensive numerical simulations are conducted to evaluate the performance of the proposed scheme. Our results establish that the proposed scheme outperforms existing centralized and distributed schemes in terms of mitigating pilot contamination and significantly enhancing network throughput.

Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.

The increasing demand for autonomous vehicles has created a need for robust navigation systems that can also operate effectively in adverse weather conditions. Visual odometry is a technique used in these navigation systems, enabling the estimation of vehicle position and motion using input from onboard cameras. However, visual odometry accuracy can be significantly impacted in challenging weather conditions, such as heavy rain, snow, or fog. In this paper, we evaluate a range of visual odometry methods, including our DROID-SLAM based heuristic approach. Specifically, these algorithms are tested on both clear and rainy weather urban driving data to evaluate their robustness. We compiled a dataset comprising of a range of rainy weather conditions from different cities. This includes, the Oxford Robotcar dataset from Oxford, the 4Seasons dataset from Munich and an internal dataset collected in Singapore. We evaluated different visual odometry algorithms for both monocular and stereo camera setups using the Absolute Trajectory Error (ATE). From the range of approaches evaluated, our findings suggest that the Depth and Flow for Visual Odometry (DF-VO) algorithm with monocular setup performed the best for short range distances (< 500m) and our proposed DROID-SLAM based heuristic approach for the stereo setup performed relatively well for long-term localization. Both VO algorithms suggested a need for a more robust sensor fusion based approach for localization in rain.

Learning continuous-time point processes is essential to many discrete event forecasting tasks. However, integration poses a major challenge, particularly for spatiotemporal point processes (STPPs), as it involves calculating the likelihood through triple integrals over space and time. Existing methods for integrating STPP either assume a parametric form of the intensity function, which lacks flexibility; or approximating the intensity with Monte Carlo sampling, which introduces numerical errors. Recent work by Omi et al. [2019] proposes a dual network or AutoInt approach for efficient integration of flexible intensity function. However, the method only focuses on the 1D temporal point process. In this paper, we introduce a novel paradigm: AutoSTPP (Automatic Integration for Spatiotemporal Neural Point Processes) that extends the AutoInt approach to 3D STPP. We show that direct extension of the previous work overly constrains the intensity function, leading to poor performance. We prove consistency of AutoSTPP and validate it on synthetic data and benchmark real world datasets, showcasing its significant advantage in recovering complex intensity functions from irregular spatiotemporal events, particularly when the intensity is sharply localized.

Sit-to-Stand (StS) is a fundamental daily activity that can be challenging for stroke survivors due to strength, motor control, and proprioception deficits in their lower limbs. Existing therapies involve repetitive StS exercises, but these can be physically demanding for therapists while assistive devices may limit patient participation and hinder motor learning. To address these challenges, this work proposes the use of two lower-limb exoskeletons to mediate physical interaction between therapists and patients during a StS rehabilitative task. This approach offers several advantages, including improved therapist-patient interaction, safety enforcement, and performance quantification. The whole body control of the two exoskeletons transmits online feedback between the two users, but at the same time assists in movement and ensures balance, and thus helping subjects with greater difficulty. In this study we present the architecture of the framework, presenting and discussing some technical choices made in the design.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司