亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative models for learning combinatorial structures have transformative impacts in many applications. However, existing approaches fail to offer efficient and accurate learning results. Because of the highly intractable nature of the gradient estimation of the learning objective subject to combinatorial constraints. Existing gradient estimation methods would easily run into exponential time/memory space, or incur huge estimation errors due to improper approximation. We develop NEural Lovasz Sampler (Nelson), a neural network based on Lov\'asz Local Lemma (LLL). We show it guarantees to generate samples satisfying combinatorial constraints from the distribution of the constrained Markov Random Fields model (MRF) under certain conditions. We further present a fully differentiable contrastive-divergence-based learning framework on constrained MRF (Nelson-CD). Meanwhile, Nelson-CD being fully differentiable allows us to take advantage of the parallel computing power of GPUs, resulting in great efficiency. Experimental results on three real-world combinatorial problems reveal that Nelson learns to generate 100% valid structures. In comparison, baselines either time out on large-size data sets or fail to generate valid structures, whereas Nelson scales much better with problem size. In addition, Nelson outperforms baselines in various learning metrics, such as log-likelihood and MAP scores.

相關內容

馬爾可夫隨機場(Markov Random Field),也有人翻譯為馬爾科夫隨機場,馬爾可夫隨機場是建立在馬爾可夫模型和貝葉斯理論基礎之上的,它包含兩層意思:一是什么是馬爾可夫,二是什么是隨機場。

Offline reinforcement learning (RL) methods strike a balance between exploration and exploitation by conservative value estimation -- penalizing values of unseen states and actions. Model-free methods penalize values at all unseen actions, while model-based methods are able to further exploit unseen states via model rollouts. However, such methods are handicapped in their ability to find unseen states far away from the available offline data due to two factors -- (a) very short rollout horizons in models due to cascading model errors, and (b) model rollouts originating solely from states observed in offline data. We relax the second assumption and present a novel unseen state augmentation strategy to allow exploitation of unseen states where the learned model and value estimates generalize. Our strategy finds unseen states by value-informed perturbations of seen states followed by filtering out states with epistemic uncertainty estimates too high (high error) or too low (too similar to seen data). We observe improved performance in several offline RL tasks and find that our augmentation strategy consistently leads to overall lower average dataset Q-value estimates i.e. more conservative Q-value estimates than a baseline.

In policy learning for robotic manipulation, sample efficiency is of paramount importance. Thus, learning and extracting more compact representations from camera observations is a promising avenue. However, current methods often assume full observability of the scene and struggle with scale invariance. In many tasks and settings, this assumption does not hold as objects in the scene are often occluded or lie outside the field of view of the camera, rendering the camera observation ambiguous with regard to their location. To tackle this problem, we present BASK, a Bayesian approach to tracking scale-invariant keypoints over time. Our approach successfully resolves inherent ambiguities in images, enabling keypoint tracking on symmetrical objects and occluded and out-of-view objects. We employ our method to learn challenging multi-object robot manipulation tasks from wrist camera observations and demonstrate superior utility for policy learning compared to other representation learning techniques. Furthermore, we show outstanding robustness towards disturbances such as clutter, occlusions, and noisy depth measurements, as well as generalization to unseen objects both in simulation and real-world robotic experiments.

Developing robot controllers capable of achieving dexterous nonprehensile manipulation, such as pushing an object on a table, is challenging. The underactuated and hybrid-dynamics nature of the problem, further complicated by the uncertainty resulting from the frictional interactions, requires sophisticated control behaviors. Reinforcement Learning (RL) is a powerful framework for developing such robot controllers. However, previous RL literature addressing the nonprehensile pushing task achieves low accuracy, non-smooth trajectories, and only simple motions, i.e. without rotation of the manipulated object. We conjecture that previously used unimodal exploration strategies fail to capture the inherent hybrid-dynamics of the task, arising from the different possible contact interaction modes between the robot and the object, such as sticking, sliding, and separation. In this work, we propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies for arbitrary starting and target object poses, i.e. positions and orientations, and with improved accuracy. We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers. Furthermore, we validate the transferability of the learned policies, trained entirely in simulation, to a physical robot hardware using the KUKA iiwa robot arm. See our supplemental video: //youtu.be/vTdva1mgrk4.

Supervised learning algorithms generally assume the availability of enough memory to store their data model during the training and test phases. However, in the Internet of Things, this assumption is unrealistic when data comes in the form of infinite data streams, or when learning algorithms are deployed on devices with reduced amounts of memory. In this paper, we adapt the online Mondrian forest classification algorithm to work with memory constraints on data streams. In particular, we design five out-of-memory strategies to update Mondrian trees with new data points when the memory limit is reached. Moreover, we design trimming mechanisms to make Mondrian trees more robust to concept drifts under memory constraints. We evaluate our algorithms on a variety of real and simulated datasets, and we conclude with recommendations on their use in different situations: the Extend Node strategy appears as the best out-of-memory strategy in all configurations, whereas different trimming mechanisms should be adopted depending on whether a concept drift is expected. All our methods are implemented in the OrpailleCC open-source library and are ready to be used on embedded systems and connected objects.

The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem by encoding in a directed graph how the loss vector can be observed in each round of the game. The mini-max regret is closely related to the structure of the feedback graph and their connection is far from being fully understood. We propose a new algorithmic framework for the problem based on a partition of the feedback graph. Our analysis reveals the interplay between various parts of the graph by decomposing the regret to the sum of the regret caused by small parts and the regret caused by their interaction. As a result, our algorithm can be viewed as an interpolation and generalization of the optimal algorithms for MAB and learning with expert advice. Our framework unifies previous algorithms for both strongly observable graphs and weakly observable graphs, resulting in improved and optimal regret bounds on a wide range of graph families including graphs of bounded degree and strongly observable graphs with a few corrupted arms.

We introduce Compartmentalized Diffusion Models (CDM), a method to train different diffusion models (or prompts) on distinct data sources and arbitrarily compose them at inference time. The individual models can be trained in isolation, at different times, and on different distributions and domains and can be later composed to achieve performance comparable to a paragon model trained on all data simultaneously. Furthermore, each model only contains information about the subset of the data it was exposed to during training, enabling several forms of training data protection. In particular, CDMs are the first method to enable both selective forgetting and continual learning for large-scale diffusion models, as well as allowing serving customized models based on the user's access rights. CDMs also allow determining the importance of a subset of the data in generating particular samples.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司