亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this letter, we incorporate index modulation (IM) into affine frequency division multiplexing (AFDM), called AFDM-IM, to enhance the bit error rate (BER) and energy efficiency (EE) performance. In this scheme, the information bits are conveyed not only by $M$-ary constellation symbols, but also by the activation of the chirp subcarriers (SCs) indices, which are determined based on the incoming bit streams. Then, two power allocation strategies, namely power reallocation (PR) strategy and power saving (PS) strategy, are proposed to enhance BER and EE performance, respectively. Furthermore, the average bit error probability (ABEP) is theoretically analyzed. Simulation results demonstrate that the proposed AFDM-IM scheme achieves better BER performance than the conventional AFDM scheme.

相關內容

In this paper we tackle the problem of persistently covering a complex non-convex environment with a team of robots. We consider scenarios where the coverage quality of the environment deteriorates with time, requiring to constantly revisit every point. As a first step, our solution finds a partition of the environment where the amount of work for each robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equitable partition through a provably correct distributed control law on the power weights. Compared to other existing partitioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance traversed. Simulation and experimental results are presented to support our proposal.

In this paper, we focus on numerical approximations of Piecewise Diffusion Markov Processes (PDifMPs), particularly when the explicit flow maps are unavailable. Our approach is based on the thinning method for modelling the jump mechanism and combines the Euler-Maruyama scheme to approximate the underlying flow dynamics. For the proposed approximation schemes, we study both the mean-square and weak convergence. Weak convergence of the algorithms is established by a martingale problem formulation. Moreover, we employ these results to simulate the migration patterns exhibited by moving glioma cells at the microscopic level. Further, we develop and implement a splitting method for this PDifMP model and employ both the Thinned Euler-Maruyama and the splitting scheme in our simulation example, allowing us to compare both methods.

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. By leveraging an existing completely positive reformulation of MBQPs, as well as a new strong-duality result, we show the exactness of the dual problem over the cone of copositive matrices, thus allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver.

Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.

This work introduces a time domain personalized method (pGTFF0) to achieve intelligibility improvement of noisy speech for Autism Spectrum Disorder (ASD) situation. For this proposal, harmonic features estimated from speech frames are considered as center frequencies of Gammatone auditory filterbanks. A gain factor is further applied to the output of the filtered samples. The key goal is the emulation of an external noise filtering tailored for individuals with ASD. A perceptual listening test demonstrates that ASD volunteers attained lower intelligibility rates than Neurotypical (NT). The proposed solution is compared to three competing approaches considering four acoustic noises at different signal-to-noise ratios. Two objective measures (ESTOI and PESQ) are also adopted for evaluation. The experimental results show that the personalized solution outperformed the competing approaches in terms of intelligibility and quality improvement.

In this paper, we study the type graph, namely, a bipartite graph induced by a joint type. We investigate the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale in the length $n$ of the type. This can be seen as an isoperimetric problem. We provide asymptotically sharp bounds for the exponent of the maximum edge density as the length of the type goes to infinity. We also study the biclique rate region of the type graph, which is defined as the set of $(R_{1},R_{2})$ such that there exists a biclique of the type graph which has respectively $2^{nR_{1}}$ and $2^{nR_{2}}$ vertices on the two sides. We provide asymptotically sharp bounds for the biclique rate region as well. We then discuss the connections of these results to noninteractive simulation and hypercontractivity inequalities. Furthermore, as an application of our results, a new outer bound for the zero-error capacity region of the binary adder channel is provided, which improves the previously best known bound, due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this paper are based on the method of types and linear algebra.

Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using a modification of the L*-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy's performance. In contrast to approaches that synthesize an automaton directly from the POMDP thereby solving it, our approach is incomparably more scalable.

While Large Language Models (LLMs) have proven to be exceptional on a variety of tasks after alignment, they may still produce responses that contradict the context or world knowledge confidently, a phenomenon known as ``hallucination''. In this paper, we demonstrate that reducing the inconsistency between the external knowledge encapsulated in the training data and the intrinsic knowledge inherited in the pretraining corpus could mitigate hallucination in alignment. Specifically, we introduce a novel knowledge consistent alignment (KCA) approach, which involves automatically formulating examinations based on external knowledge for accessing the comprehension of LLMs. For data encompassing knowledge inconsistency, KCA implements several simple yet efficient strategies for processing. We illustrate the superior performance of the proposed KCA approach in mitigating hallucinations across six benchmarks using LLMs of different backbones and scales. Furthermore, we confirm the correlation between knowledge inconsistency and hallucination, signifying the effectiveness of reducing knowledge inconsistency in alleviating hallucinations. Our code, model weights, and data are public at \url{//github.com/fanqiwan/KCA}.

Generating proofs of unsatisfiability is a valuable capability of most SAT solvers, and is an active area of research for SMT solvers. This paper introduces the first method to efficiently generate proofs of unsatisfiability specifically for an important subset of SMT: SAT Modulo Monotonic Theories (SMMT), which includes many useful finite-domain theories (e.g., bit vectors and many graph-theoretic properties) and is used in production at Amazon Web Services. Our method uses propositional definitions of the theory predicates, from which it generates compact Horn approximations of the definitions, which lead to efficient DRAT proofs, leveraging the large investment the SAT community has made in DRAT. In experiments on practical SMMT problems, our proof generation overhead is minimal (7.41% geometric mean slowdown, 28.8% worst-case), and we can generate and check proofs for many problems that were previously intractable.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司