Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaningful modes. In particular, PCA will fail the spatial Gaussian Process (GP) model in the undersampling regime, i.e. the averaged distance of neighboring anchor points (spatial features) is greater than the correlation length of GP. Counterintuitively, by drawing the connection between PCA and Schr\"odinger equation, we can not only attack the undersampling challenge but also compute in an efficient and decoupled way with the proposed algorithm called Schr\"odinger PCA. Our algorithm only requires variances of features and estimated correlation length as input, constructs the corresponding Schr\"odinger equation, and solves it to obtain the energy eigenstates, which coincide with principal components. We will also establish the connection of our algorithm to the model reduction techniques in the partial differential equation (PDE) community, where the steady-state Schr\"odinger operator is identified as a second-order approximation to the covariance function. Numerical experiments are implemented to testify the validity and efficiency of the proposed algorithm, showing its potential for unsupervised learning tasks on general graphs and manifolds.
In this paper, we introduce a computational framework for recovering a high-resolution approximation of an unknown function from its low-resolution indirect measurements as well as high-resolution training observations by merging the frameworks of generalized sampling and functional principal component analysis. In particular, we increase the signal resolution via a data driven approach, which models the function of interest as a realization of a random field and leverages a training set of observations generated via the same underlying random process. We study the performance of the resulting estimation procedure and show that high-resolution recovery is indeed possible provided appropriate low-rank and angle conditions hold and provided the training set is sufficiently large relative to the desired resolution. Moreover, we show that the size of the training set can be reduced by leveraging sparse representations of the functional principal components. Furthermore, the effectiveness of the proposed reconstruction procedure is illustrated by various numerical examples.
We construct mesh-independent and parameter-robust monolithic solvers for the coupled primal Stokes-Darcy problem. Three different formulations and their discretizations in terms of conforming and non-conforming finite element methods and finite volume methods are considered. In each case, robust preconditioners are derived using a unified theoretical framework. In particular, the suggested preconditioners utilize operators in fractional Sobolev spaces. Numerical experiments demonstrate the parameter-robustness of the proposed solvers.
In this work we consider a class of non-linear eigenvalue problems that admit a spectrum similar to that of a Hamiltonian matrix, in the sense that the spectrum is symmetric with respect to both the real and imaginary axis. More precisely, we present a method to iteratively approximate the eigenvalues of such non-linear eigenvalue problems closest to a given purely real or imaginary shift, while preserving the symmetries of the spectrum. To this end the presented method exploits the equivalence between the considered non-linear eigenvalue problem and the eigenvalue problem associated with a linear but infinite-dimensional operator. To compute the eigenvalues closest to the given shift, we apply a specifically chosen shift-invert transformation to this linear operator and compute the eigenvalues with the largest modulus of the new shifted and inverted operator using an (infinite) Arnoldi procedure. The advantage of the chosen shift-invert transformation is that the spectrum of the transformed operator has a "real skew-Hamiltonian"-like structure. Furthermore, it is proven that the Krylov space constructed by applying this operator, satisfies an orthogonality property in terms of a specifically chosen bilinear form. By taking this property into account in the orthogonalization process, it is ensured that even in the presence of rounding errors, the obtained approximation for, e.g., a simple, purely imaginary eigenvalue is simple and purely imaginary. The presented work can thus be seen as an extension of [V. Mehrmann and D. Watkins, "Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils", SIAM J. Sci. Comput. (22.6), 2001], to the considered class of non-linear eigenvalue problems. Although the presented method is initially defined on function spaces, it can be implemented using finite dimensional linear algebra operations.
Recently, Zhang et al. (2021) developed a new neural network architecture based on $\ell_\infty$-distance functions, which naturally possesses certified robustness by its construction. Despite the excellent theoretical properties, the model so far can only achieve comparable performance to conventional networks. In this paper, we significantly boost the certified robustness of $\ell_\infty$-distance nets through a careful analysis of its training process. In particular, we show the $\ell_p$-relaxation, a crucial way to overcome the non-smoothness of the model, leads to an unexpected large Lipschitz constant at the early training stage. This makes the optimization insufficient using hinge loss and produces sub-optimal solutions. Given these findings, we propose a simple approach to address the issues above by using a novel objective function that combines a scaled cross-entropy loss with clipped hinge loss. Our experiments show that using the proposed training strategy, the certified accuracy of $\ell_\infty$-distance net can be dramatically improved from 33.30% to 40.06% on CIFAR-10 ($\epsilon=8/255$), meanwhile significantly outperforming other approaches in this area. Such a result clearly demonstrates the effectiveness and potential of $\ell_\infty$-distance net for certified robustness.
This paper is concerned with the time-dependent Maxwell's equations for a plane interface between a negative material described by the Drude model and the vacuum, which fill, respectively, two complementary half-spaces. In a first paper, we have constructed a generalized Fourier transform which diagonalizes the Hamiltonian that represents the propagation of transverse electric waves. In this second paper, we use this transform to prove the limiting absorption and limiting amplitude principles, which concern, respectively, the behavior of the resolvent near the continuous spectrum and the long time response of the medium to a time-harmonic source of prescribed frequency. This paper also underlines the existence of an interface resonance which occurs when there exists a particular frequency characterized by a ratio of permittivities and permeabilities equal to $-1$ across the interface. At this frequency, the response of the system to a harmonic forcing term blows up linearly in time. Such a resonance is unusual for wave problem in unbounded domains and corresponds to a non-zero embedded eigenvalue of infinite multiplicity of the underlying operator. This is the time counterpart of the ill-posdness of the corresponding harmonic problem.
Duality results connecting persistence modules for absolute and relative homology provides a fundamental understanding into persistence theory. In this paper, we study similar associations in the context of zigzag persistence. Our main finding is a weak duality for the so-called non-repetitive zigzag filtrations in which a simplex is never added again after being deleted. The technique used to prove the duality for non-zigzag persistence does not extend straightforwardly to our case. Accordingly, taking a different route, we prove the weak duality by converting a non-repetitive filtration to an up-down filtration by a sequence of diamond switches. We then show an application of the weak duality result which gives a near-linear algorithm for computing the $p$-th and a subset of the $(p-1)$-th persistence for a non-repetitive zigzag filtration of a simplicial $p$-manifold. Utilizing the fact that a non-repetitive filtration admits an up-down filtration as its canonical form, we further reduce the problem of computing zigzag persistence for non-repetitive filtrations to the problem of computing standard persistence for which several efficient implementations exist. Our experiment shows that this achieves substantial performance gain. Our study also identifies repetitive filtrations as instances that fundamentally distinguish zigzag persistence from the standard persistence.
Principal Subspace Analysis (PSA) -- and its sibling, Principal Component Analysis (PCA) -- is one of the most popular approaches for dimensionality reduction in signal processing and machine learning. But centralized PSA/PCA solutions are fast becoming irrelevant in the modern era of big data, in which the number of samples and/or the dimensionality of samples often exceed the storage and/or computational capabilities of individual machines. This has led to the study of distributed PSA/PCA solutions, in which the data are partitioned across multiple machines and an estimate of the principal subspace is obtained through collaboration among the machines. It is in this vein that this paper revisits the problem of distributed PSA/PCA under the general framework of an arbitrarily connected network of machines that lacks a central server. The main contributions of the paper in this regard are threefold. First, two algorithms are proposed in the paper that can be used for distributed PSA/PCA, with one in the case of data partitioned across samples and the other in the case of data partitioned across (raw) features. Second, in the case of sample-wise partitioned data, the proposed algorithm and a variant of it are analyzed, and their convergence to the true subspace at linear rates is established. Third, extensive experiments on both synthetic and real-world data are carried out to validate the usefulness of the proposed algorithms. In particular, in the case of sample-wise partitioned data, an MPI-based distributed implementation is carried out to study the interplay between network topology and communications cost as well as to study the effects of straggler machines on the proposed algorithms.
In this paper, we propose a monotone approximation scheme for a class of fully nonlinear partial integro-differential equations (PIDEs) which characterize the nonlinear $\alpha$-stable L\'{e}vy processes under sublinear expectation space with $\alpha \in(1,2)$. Two main results are obtained: (i) the error bounds for the monotone approximation scheme of nonlinear PIDEs, and (ii) the convergence rates of a generalized central limit theorem of Bayraktar-Munk for $\alpha$-stable random variables under sublinear expectation. Our proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.
Analytical conditions are available for the optimum design of impact absorbers for the case where the host structure is well described as rigid body. Accordingly, the analysis relies on the assumption that the impacts cause immediate dissipation in the contact region, which is modeled in terms of a known coefficient of restitution. When a flexible host structure is considered instead, the impact absorber not only dissipates energy at the time instances of impact, but it inflicts nonlinear energy scattering between structural modes. Hence, it is crucial to account for such nonlinear energy transfers yielding energy redistribution within the modal space of the structure. In the present work, we develop a design approach for reonantly-driven, flexible host structures. We demonstrate decoupling of the time scales of the impact and the resonant vibration. On the long time scale, the dynamics can be properly reduced to the fundamental harmonic of the resonant mode. A light impact absorber responds to this enforced motion, and we recover the Slow Invariant Manifold of the dynamics for the regime of two impacts per period. On the short time scale, the contact mechanics and elasto-dynamics must be finely resolved. We show that it is sufficient to run a numerical simulation of a single impact event with adequate pre-impact velocity. From this simulation, we derive a modal coefficient of restitution and the properties of the contact force pulse, needed to approximate the behavior on the long time scale. We establish that the design problem can be reduced to four dimensionless parameters and demonstrate the approach for the numerical example of a cantilevered beam with an impact absorber. We conclude that the proposed semi-analytical procedure enables deep qualitative understanding of the problem and, at the same time, yields a quantitatively accurate prediction of the optimum design.
We focus on finite element method computations for time-dependent problems. We prove that the computational cost of the space-time formulation is higher than the cost of the time-marching schemes. This applies to both direct and iterative solvers. It concerns both uniform and adaptive grids. The only exception from this rule is the h adaptive space-time simulation of the traveling point object, resulting in refinements towards their trajectory in the space-time domain. However, if this object has wings and the mesh refinements capture the shape of the wing (if the mesh refinements capture any two-dimensional manifold) the space-time formulation is more expensive than time-marching schemes. We also show that the cost of static condensation for the higher-order finite element method with hierarchical basis functions is always higher for space-time formulations. Numerical experiments with Octave confirm our theoretical findings.