In the Maximum Independent Set of Objects problem, we are given an $n$-vertex planar graph $G$ and a family $\mathcal{D}$ of $N$ objects, where each object is a connected subgraph of $G$. The task is to find a subfamily $\mathcal{F} \subseteq \mathcal{D}$ of maximum cardinality that consists of pairwise disjoint objects. This problem is $\mathsf{NP}$-hard and is equivalent to the problem of finding the maximum number of pairwise disjoint polygons in a given family of polygons in the plane. As shown by Adamaszek et al. (J. ACM '19), the problem admits a \emph{quasi-polynomial time approximation scheme} (QPTAS): a $(1-\varepsilon)$-approximation algorithm whose running time is bounded by $2^{\mathrm{poly}(\log(N),1/\epsilon)} \cdot n^{\mathcal{O}(1)}$. Nevertheless, to the best of our knowledge, in the polynomial-time regime only the trivial $\mathcal{O}(N)$-approximation is known for the problem in full generality. In the restricted setting where the objects are pseudolines in the plane, Fox and Pach (SODA '11) gave an $N^{\varepsilon}$-approximation algorithm with running time $N^{2^{\tilde{\mathcal{O}}(1/\varepsilon)}}$, for any $\varepsilon>0$. In this work, we present an $\text{OPT}^{\varepsilon}$-approximation algorithm for the problem that runs in time $N^{\tilde{\mathcal{O}}(1/\varepsilon^2)} n^{\mathcal{O}(1)}$, for any $\varepsilon>0$, thus improving upon the result of Fox and Pach both in terms of generality and in terms of the running time. Our approach combines the methodology of Voronoi separators, introduced by Marx and Pilipczuk (TALG '22), with a new analysis of the approximation factor.
We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.
For a graph $ G = (V, E) $ with a vertex set $ V $ and an edge set $ E $, a function $ f : V \rightarrow \{0, 1, 2, . . . , diam(G)\} $ is called a \emph{broadcast} on $ G $. For each vertex $ u \in V $, if there exists a vertex $ v $ in $ G $ (possibly, $ u = v $) such that $ f (v) > 0 $ and $ d(u, v) \leq f (v) $, then $ f $ is called a dominating broadcast on $ G $. The cost of the dominating broadcast $f$ is the quantity $ \sum_{v\in V}f(v) $. The minimum cost of a dominating broadcast is the broadcast domination number of $G$, denoted by $ \gamma_{b}(G) $. A multipacking is a set $ S \subseteq V $ in a graph $ G = (V, E) $ such that for every vertex $ v \in V $ and for every integer $ r \geq 1 $, the ball of radius $ r $ around $ v $ contains at most $ r $ vertices of $ S $, that is, there are at most $ r $ vertices in $ S $ at a distance at most $ r $ from $ v $ in $ G $. The multipacking number of $ G $ is the maximum cardinality of a multipacking of $ G $ and is denoted by $ mp(G) $. We show that, for any connected chordal graph $G$, $\gamma_{b}(G)\leq \big\lceil{\frac{3}{2} mp(G)\big\rceil}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for connected chordal graphs by constructing an infinite family of connected chordal graphs such that the ratio $\gamma_b(G)/mp(G)=10/9$, with $mp(G)$ arbitrarily large. Moreover, we show that $\gamma_{b}(G)\leq \big\lfloor{\frac{3}{2} mp(G)+2\delta\big\rfloor} $ holds for all $\delta$-hyperbolic graphs. In addition, we provide a polynomial-time algorithm to construct a multipacking of a $\delta$-hyperbolic graph $G$ of size at least $ \big\lceil{\frac{2mp(G)-4\delta}{3} \big\rceil} $.
In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.
The aim of this paper is to give a systematic mathematical interpretation of the diffusion problem on which Graph Neural Networks (GNNs) models are based. The starting point of our approach is a dissipative functional leading to dynamical equations which allows us to study the symmetries of the model. We discuss the conserved charges and provide a charge-preserving numerical method for solving the dynamical equations. In any dynamical system and also in GRAph Neural Diffusion (GRAND), knowing the charge values and their conservation along the evolution flow could provide a way to understand how GNNs and other networks work with their learning capabilities.
We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.
The existence of $q$-ary linear complementary pairs (LCPs) of codes with $q> 2$ has been completely characterized so far. This paper gives a characterization for the existence of binary LCPs of codes. As a result, we solve an open problem proposed by Carlet $et~al.$ (IEEE Trans. Inf. Theory 65(3): 1694-1704, 2019) and a conjecture proposed by Choi $et~al.$ (Cryptogr. Commun. 15(2): 469-486, 2023).
A class of graphs $\mathcal{G}$ is $\chi$-bounded if there exists a function $f$ such that $\chi(G) \leq f(\omega(G))$ for each graph $G \in \mathcal{G}$, where $\chi(G)$ and $\omega(G)$ are the chromatic and clique number of $G$, respectively. The square of a graph $G$, denoted as $G^2$, is the graph with the same vertex set as $G$ in which two vertices are adjacent when they are at a distance at most two in $G$. In this paper, we study the $\chi$-boundedness of squares of bipartite graphs and its subclasses. Note that the class of squares of graphs, in general, admit a quadratic $\chi$-binding function. Moreover there exist bipartite graphs $B$ for which $\chi\left(B^2\right)$ is $\Omega\left(\frac{\left(\omega\left(B^2\right)\right)^2 }{\log \omega\left(B^2\right)}\right)$. We first ask the following question: "What sub-classes of bipartite graphs have a linear $\chi$-binding function?" We focus on the class of convex bipartite graphs and prove the following result: for any convex bipartite graph $G$, $\chi\left(G^2\right) \leq \frac{3 \omega\left(G^2\right)}{2}$. Our proof also yields a polynomial-time $3/2$-approximation algorithm for coloring squares of convex bipartite graphs. We then introduce a notion called "partite testable properties" for the squares of bipartite graphs. We say that a graph property $P$ is partite testable for the squares of bipartite graphs if for a bipartite graph $G=(A,B,E)$, whenever the induced subgraphs $G^2[A]$ and $G^2[B]$ satisfies the property $P$ then $G^2$ also satisfies the property $P$. Here, we discuss whether some of the well-known graph properties like perfectness, chordality, (anti-hole)-freeness, etc. are partite testable or not. As a consequence, we prove that the squares of biconvex bipartite graphs are perfect.
The problem of packing as many subgraphs isomorphic to $H \in \mathcal H$ as possible in a graph for a class $\mathcal H$ of graphs is well studied in the literature. Both vertex-disjoint and edge-disjoint versions are known to be NP-complete for $H$ that contains at least three vertices and at least three edges, respectively. In this paper, we consider ``list variants'' of these problems: Given a graph $G$, an integer $k$, and a collection $\mathcal L_{\mathcal H}$ of subgraphs of $G$ isomorphic to some $H \in \mathcal H$, the goal is to compute $k$ subgraphs in $\mathcal L_{\mathcal H}$ that are pairwise vertex- or edge-disjoint. We show several positive and negative results, focusing on classes of sparse graphs, such as bounded-degree graphs, planar graphs, and bounded-treewidth graphs.
Let $X$ be a $p$-variate random vector and $\widetilde{X}$ a knockoff copy of $X$ (in the sense of \cite{CFJL18}). A new approach for constructing $\widetilde{X}$ (henceforth, NA) has been introduced in \cite{JSPI}. NA has essentially three advantages: (i) To build $\widetilde{X}$ is straightforward; (ii) The joint distribution of $(X,\widetilde{X})$ can be written in closed form; (iii) $\widetilde{X}$ is often optimal under various criteria. However, for NA to apply, $X_1,\ldots, X_p$ should be conditionally independent given some random element $Z$. Our first result is that any probability measure $\mu$ on $\mathbb{R}^p$ can be approximated by a probability measure $\mu_0$ of the form $$\mu_0\bigl(A_1\times\ldots\times A_p\bigr)=E\Bigl\{\prod_{i=1}^p P(X_i\in A_i\mid Z)\Bigr\}.$$ The approximation is in total variation distance when $\mu$ is absolutely continuous, and an explicit formula for $\mu_0$ is provided. If $X\sim\mu_0$, then $X_1,\ldots,X_p$ are conditionally independent. Hence, with a negligible error, one can assume $X\sim\mu_0$ and build $\widetilde{X}$ through NA. Our second result is a characterization of the knockoffs $\widetilde{X}$ obtained via NA. It is shown that $\widetilde{X}$ is of this type if and only if the pair $(X,\widetilde{X})$ can be extended to an infinite sequence so as to satisfy certain invariance conditions. The basic tool for proving this fact is de Finetti's theorem for partially exchangeable sequences. In addition to the quoted results, an explicit formula for the conditional distribution of $\widetilde{X}$ given $X$ is obtained in a few cases. In one of such cases, it is assumed $X_i\in\{0,1\}$ for all $i$.
In 2009, Shur published the following conjecture: Let $L$ be a power-free language and let $e(L)\subseteq L$ be the set of words of $L$ that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $uwv \in e(L)$ for some word $w$. Let $L_{k,\alpha}$ denote an $\alpha$-power free language over an alphabet with $k$ letters, where $\alpha$ is a positive rational number and $k$ is positive integer. We prove the conjecture for the languages $L_{k,\alpha}$, where $\alpha\geq 5$ and $k\geq 3$.