亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many software projects implement APIs and algorithms in multiple programming languages. Maintaining such projects is tiresome, as developers have to ensure that any change (e.g., a bug fix or a new feature) is being propagated, timely and without errors, to implementations in other programming languages. In the world of ever-changing software, using rule-based translation tools (i.e., transpilers) or machine learning models for translating code from one language to another provides limited value. Translating each time the entire codebase from one language to another is not the way developers work. In this paper, we target a novel task: translating code changes from one programming language to another using large language models (LLMs). We design and implement the first LLM, dubbed Codeditor, to tackle this task. Codeditor explicitly models code changes as edit sequences and learns to correlate changes across programming languages. To evaluate Codeditor, we collect a corpus of 6,613 aligned code changes from 8 pairs of open-source software projects implementing similar functionalities in two programming languages (Java and C#). Results show that Codeditor outperforms the state-of-the-art approaches by a large margin on all commonly used automatic metrics. Our work also reveals that Codeditor is complementary to the existing generation-based models, and their combination ensures even greater performance.

相關內容

Federated learning (FL), as an effective decentralized distributed learning approach, enables multiple institutions to jointly train a model without sharing their local data. However, the domain feature shift caused by different acquisition devices/clients substantially degrades the performance of the FL model. Furthermore, most existing FL approaches aim to improve accuracy without considering reliability (e.g., confidence or uncertainty). The predictions are thus unreliable when deployed in safety-critical applications. Therefore, aiming at improving the performance of FL in non-Domain feature issues while enabling the model more reliable. In this paper, we propose a novel reliable federated disentangling network, termed RFedDis, which utilizes feature disentangling to enable the ability to capture the global domain-invariant cross-client representation and preserve local client-specific feature learning. Meanwhile, to effectively integrate the decoupled features, an uncertainty-aware decision fusion is also introduced to guide the network for dynamically integrating the decoupled features at the evidence level, while producing a reliable prediction with an estimated uncertainty. To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling, which enhances the performance and reliability of FL in non-IID domain features. Extensive experimental results show that our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.

Audio-visual speech enhancement (AV-SE) aims to enhance degraded speech along with extra visual information such as lip videos, and has been shown to be more effective than audio-only speech enhancement. This paper proposes the incorporation of ultrasound tongue images to improve the performance of lip-based AV-SE systems further. To address the challenge of acquiring ultrasound tongue images during inference, we first propose to employ knowledge distillation during training to investigate the feasibility of leveraging tongue-related information without directly inputting ultrasound tongue images. Specifically, we guide an audio-lip speech enhancement student model to learn from a pre-trained audio-lip-tongue speech enhancement teacher model, thus transferring tongue-related knowledge. To better model the alignment between the lip and tongue modalities, we further propose the introduction of a lip-tongue key-value memory network into the AV-SE model. This network enables the retrieval of tongue features based on readily available lip features, thereby assisting the subsequent speech enhancement task. Experimental results demonstrate that both methods significantly improve the quality and intelligibility of the enhanced speech compared to traditional lip-based AV-SE baselines. Moreover, both proposed methods exhibit strong generalization performance on unseen speakers and in the presence of unseen noises. Furthermore, phone error rate (PER) analysis of automatic speech recognition (ASR) reveals that while all phonemes benefit from introducing ultrasound tongue images, palatal and velar consonants benefit most.

Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. The current approaches for MAPF can be broadly categorized into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a crowd-aware decentralized approach to address this problem by leveraging reinforcement learning guided by a boosted curriculum-based training strategy. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 58% measured in makespan and collision count, and up to 5% in success rate in comparison to previous methods.

Communication efficiency is a major challenge in federated learning (FL). In client-server schemes, the server constitutes a bottleneck, and while decentralized setups spread communications, they do not necessarily reduce them due to slower convergence. We propose Multi-Token Coordinate Descent (MTCD), a communication-efficient algorithm for semi-decentralized vertical federated learning, exploiting both client-server and client-client communications when each client holds a small subset of features. Our multi-token method can be seen as a parallel Markov chain (block) coordinate descent algorithm and it subsumes the client-server and decentralized setups as special cases. We obtain a convergence rate of $\mathcal{O}(1/T)$ for nonconvex objectives when tokens roam over disjoint subsets of clients and for convex objectives when they roam over possibly overlapping subsets. Numerical results show that MTCD improves the state-of-the-art communication efficiency and allows for a tunable amount of parallel communications.

Understanding the decision-making process of a machine/deep learning model is crucial, particularly in security-sensitive applications. In this study, we introduce a neural network framework that combines the global and exact interpretability properties of rule-based models with the high performance of deep neural networks. Our proposed framework, called $\textit{Truth Table rules}$ (TT-rules), is built upon $\textit{Truth Table nets}$ (TTnets), a family of deep neural networks initially developed for formal verification. By extracting the set of necessary and sufficient rules $\mathcal{R}$ from the trained TTnet model (global interpretability), yielding the same output as the TTnet (exact interpretability), TT-rules effectively transforms the neural network into a rule-based model. This rule-based model supports binary classification, multi-label classification, and regression tasks for tabular datasets. Furthermore, our TT-rules framework optimizes the rule set $\mathcal{R}$ into $\mathcal{R}_{opt}$ by reducing the number and size of the rules. To enhance model interpretation, we leverage Reduced Ordered Binary Decision Diagrams (ROBDDs) to visualize these rules effectively. After outlining the framework, we evaluate the performance of TT-rules on seven tabular datasets from finance, healthcare, and justice domains. We also compare the TT-rules framework to state-of-the-art rule-based methods. Our results demonstrate that TT-rules achieves equal or higher performance compared to other interpretable methods while maintaining a balance between performance and complexity. Notably, TT-rules presents the first accurate rule-based model capable of fitting large tabular datasets, including two real-life DNA datasets with over 20K features. Finally, we extensively investigate a rule-based model derived from TT-rules using the Adult dataset.

Many real-world dynamical systems can be described as State-Space Models (SSMs). In this formulation, each observation is emitted by a latent state, which follows first-order Markovian dynamics. A Probabilistic Deep SSM (ProDSSM) generalizes this framework to dynamical systems of unknown parametric form, where the transition and emission models are described by neural networks with uncertain weights. In this work, we propose the first deterministic inference algorithm for models of this type. Our framework allows efficient approximations for training and testing. We demonstrate in our experiments that our new method can be employed for a variety of tasks and enjoys a superior balance between predictive performance and computational budget.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司