Technological advancements of Blockchain and other Distributed Ledger Techniques (DLTs) promise to provide significant advantages to applications seeking transparency, redundancy, and accountability. Actual adoption of these emerging technologies requires incorporating cost-effective, fast, QoS-enabled, secure, and scalable design. With the recent advent of quantum computing, the security of current blockchain cryptosystems can be compromised to a greater extent. Quantum algorithms like Shor's large integer factorization algorithm and Grover's unstructured database search algorithm can provide exponential and quadratic speedup, respectively, in contrast to their classical counterpart. This can put threats on both public-key cryptosystems and hash functions, which necessarily demands to migrate from classical cryptography to quantum-secure cryptography. Moreover, the computational latency of blockchain platforms causes slow transaction speed, so quantum computing principles might provide significant speedup and scalability in transaction processing and accelerating the mining process. For such purpose, this article first studies current and future classical state-of-the-art blockchain scalability and security primitives. The relevant quantum-safe blockchain cryptosystem initiatives which have been taken by Bitcoin, Ethereum, Corda, etc. are stated and compared with respect to key sizes, hash length, execution time, computational overhead, and energy efficiency. Post Quantum Cryptographic algorithms like Code-based, Lattice-based, Multivariate-based, and other schemes are not well suited for classical blockchain technology due to several disadvantages in practical implementation. Decryption latency, massive consumption of computational resources, and increased key size are few challenges that can hinder blockchain performance.
We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that may be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\cdot|P|)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing. The construction provides a non-relativizing argument for $NP\subseteq BQP$, without violating the optimality of Grover's algorithm, also on gate-model quantum machines, and motivates a temporal and spatial metric of quantum advantage. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.
During the COVID-19 pandemic, the scientific literature related to SARS-COV-2 has been growing dramatically, both in terms of the number of publications and of its impact on people's life. This literature encompasses a varied set of sensible topics, ranging from vaccination, to protective equipment efficacy, to lockdown policy evaluation. Up to now, hundreds of thousands of papers have been uploaded on online repositories and published in scientific journals. As a result, the development of digital methods that allow an in-depth exploration of this growing literature has become a relevant issue, both to identify the topical trends of COVID-related research and to zoom-in its sub-themes. This work proposes a novel methodology, called LDA2Net, which combines topic modelling and network analysis to investigate topics under their surface. Specifically, LDA2Net exploits the frequencies of pairs of consecutive words to reconstruct the network structure of topics discussed in the Cord-19 corpus. The results suggest that the effectiveness of topic models can be magnified by enriching them with word network representations, and by using the latter to display, analyse, and explore COVID-related topics at different levels of granularity.
Digital vaccine passports are one of the main solutions which would allow the restart of travel in a post COVID-19 world. Trust, scalability and security are all key challenges one must overcome in implementing a vaccine passport. Initial approaches attempt to solve this problem by using centralised systems with trusted authorities. However, sharing vaccine passport data between different organisations, regions and countries has become a major challenge. This paper designs a new platform architecture for creating, storing and verifying digital COVID-19 vaccine certifications. The platform makes use of the InterPlanetary File System (IPFS) to guarantee there is no single point of failure and allow data to be securely distributed globally. Blockchain and smart contracts are also integrated into the platform to define policies and log access rights to vaccine passport data while ensuring all actions are audited and verifiably immutable. Our proposed platform realises General Data Protection Regulation (GDPR) requirements in terms of user consent, data encryption, data erasure and accountability obligations. We assess the scalability and performance of the platform using IPFS and Blockchain test networks.
Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evolution of blockchain, especially after the Ethereum DAO attack in 2016. However, there are no systematic efforts to analyse existing governance solutions. To understand the state-of-the-art of blockchain governance, we conducted a systematic literature review with 35 primary studies. The extracted data from primary studies are synthesised to answer identified research questions. The study results reveal several major findings: 1) governance can improve the adaptability and upgradability of blockchain, whilst the current studies neglect broader ethical responsibilities as the objectives of blockchain governance; 2) governance is along with the development process of a blockchain platform, while ecosystem-level governance process is missing, and; 3) the responsibilities and capabilities of blockchain stakeholders are briefly discussed, whilst the decision rights, accountability, and incentives of blockchain stakeholders are still under studied. We provide actionable guidelines for academia and practitioners to use throughout the lifecycle of blockchain, and identify future trends to support researchers in this area.
Prescriptive process monitoring methods seek to optimize a business process by recommending interventions at runtime to prevent negative outcomes or poorly performing cases. In recent years, various prescriptive process monitoring methods have been proposed. This paper studies existing methods in this field via a Systematic Literature Review (SLR). In order to structure the field, the paper proposes a framework for characterizing prescriptive process monitoring methods according to their performance objective, performance metrics, intervention types, modeling techniques, data inputs, and intervention policies. The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods. The paper highlights the need to validate existing and new methods in real-world settings, to extend the types of interventions beyond those related to the temporal and cost perspectives, and to design policies that take into account causality and second-order effects.
High-quality medical systematic reviews require comprehensive literature searches to ensure the recommendations and outcomes are sufficiently reliable. Indeed, searching for relevant medical literature is a key phase in constructing systematic reviews and often involves domain (medical researchers) and search (information specialists) experts in developing the search queries. Queries in this context are highly complex, based on Boolean logic, include free-text terms and index terms from standardised terminologies (e.g., MeSH), and are difficult and time-consuming to build. The use of MeSH terms, in particular, has been shown to improve the quality of the search results. However, identifying the correct MeSH terms to include in a query is difficult: information experts are often unfamiliar with the MeSH database and unsure about the appropriateness of MeSH terms for a query. Naturally, the full value of the MeSH terminology is often not fully exploited. This paper investigates methods to suggest MeSH terms based on an initial Boolean query that includes only free-text terms. These methods promise to automatically identify highly effective MeSH terms for inclusion in a systematic review query. Our study contributes an empirical evaluation of several MeSH term suggestion methods. We perform an extensive analysis of the retrieval, ranking, and refinement of MeSH term suggestions for each method and how these suggestions impact the effectiveness of Boolean queries.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.
In the last few years, deep multi-agent reinforcement learning (RL) has become a highly active area of research. A particularly challenging class of problems in this area is partially observable, cooperative, multi-agent learning, in which teams of agents must learn to coordinate their behaviour while conditioning only on their private observations. This is an attractive research area since such problems are relevant to a large number of real-world systems and are also more amenable to evaluation than general-sum problems. Standardised environments such as the ALE and MuJoCo have allowed single-agent RL to move beyond toy domains, such as grid worlds. However, there is no comparable benchmark for cooperative multi-agent RL. As a result, most papers in this field use one-off toy problems, making it difficult to measure real progress. In this paper, we propose the StarCraft Multi-Agent Challenge (SMAC) as a benchmark problem to fill this gap. SMAC is based on the popular real-time strategy game StarCraft II and focuses on micromanagement challenges where each unit is controlled by an independent agent that must act based on local observations. We offer a diverse set of challenge maps and recommendations for best practices in benchmarking and evaluations. We also open-source a deep multi-agent RL learning framework including state-of-the-art algorithms. We believe that SMAC can provide a standard benchmark environment for years to come. Videos of our best agents for several SMAC scenarios are available at: //youtu.be/VZ7zmQ_obZ0.
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.