亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper analyzes the rotation averaging problem as a minimization problem for a potential function of the corresponding gradient system. This dynamical system is one generalization of the famous Kuramoto model on special orthogonal group SO(3), which is known as the non-Abelian Kuramoto model. We have proposed a novel method for finding weighted and unweighted rotation average. In order to verify the correctness of our algorithms, we have compared the simulation results with geometric and projected average using real and random data sets. In particular, we have discovered that our method gives approximately the same results as geometric average.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Nesterov加速梯度 · FAST · 相似度 · 離散化 ·
2022 年 1 月 27 日

We revisit the Ravine method of Gelfand and Tsetlin from a dynamical system perspective, study its convergence properties, and highlight its similarities and differences with the Nesterov accelerated gradient method. The two methods are closely related. They can be deduced from each other by reversing the order of the extrapolation and gradient operations in their definitions. They benefit from similar fast convergence of values and convergence of iterates for general convex objective functions. We will also establish the high resolution ODE of the Ravine and Nesterov methods, and reveal an additional geometric damping term driven by the Hessian for both methods. This will allow us to prove fast convergence towards zero of the gradients not only for the Ravine method but also for the Nesterov method for the first time. We also highlight connections to other algorithms stemming from more subtle discretization schemes, and finally describe a Ravine version of the proximal-gradient algorithms for general structured smooth + non-smooth convex optimization problems.

We introduce a class of Markov chains, that contains the model of stochastic approximation by averaging and non-averaging. Using martingale approximation method, we establish various deviation inequalities for separately Lipschitz functions of such a chain, with different moment conditions on some dominating random variables of martingale differences.Finally, we apply these inequalities to the stochastic approximation by averaging and empirical risk minimisation.

The $k$-center problem is to choose a subset of size $k$ from a set of $n$ points such that the maximum distance from each point to its nearest center is minimized. Let $Q=\{Q_1,\ldots,Q_n\}$ be a set of polygons or segments in the region-based uncertainty model, in which each $Q_i$ is an uncertain point, where the exact locations of the points in $Q_i$ are unknown. The geometric objects segments and polygons can be models of a point set. We define the uncertain version of the $k$-center problem as a generalization in which the objective is to find $k$ points from $Q$ to cover the remaining regions of $Q$ with minimum or maximum radius of the cluster to cover at least one or all exact instances of each $Q_i$, respectively. We modify the region-based model to allow multiple points to be chosen from a region and call the resulting model the aggregated uncertainty model. All these problems contain the point version as a special case, so they are all NP-hard with a lower bound 1.822. We give approximation algorithms for uncertain $k$-center of a set of segments and polygons. We also have implemented some of our algorithms on a data-set to show our theoretical performance guarantees can be achieved in practice.

The Kaczmarz method is an iterative numerical method for solving large and sparse rectangular systems of linear equations. Gearhart, Koshy and Tam have developed an acceleration technique for the Kaczmarz method that minimizes the distance to the desired solution in the direction of a full Kaczmarz step. The present paper generalizes this technique to an acceleration scheme that minimizes the Euclidean norm error over an affine subspace spanned by a number of previous iterates and one additional cycle of the Kaczmarz method. The key challenge is to find a formulation in which all parameters of the least-squares problem defining the unique minimizer are known, and to solve this problem efficiently. A numerical experiment demonstrates that the proposed affine search has the potential to clearly outperform the Kaczmarz and the randomized Kaczmarz methods with and without the Gearhart-Koshy/Tam line-search.

Graph alignment aims at finding the vertex correspondence between two correlated graphs, a task that frequently occurs in graph mining applications such as social network analysis. Attributed graph alignment is a variant of graph alignment, in which publicly available side information or attributes are exploited to assist graph alignment. Existing studies on attributed graph alignment focus on either theoretical performance without computational constraints or empirical performance of efficient algorithms. This motivates us to investigate efficient algorithms with theoretical performance guarantee. In this paper, we propose two polynomial-time algorithms that exactly recover the vertex correspondence with high probability. The feasible region of the proposed algorithms is near optimal compared to the information-theoretic limits. When specialized to the seeded graph alignment problem, the proposed algorithms strictly improve the best known feasible region for exact alignment by polynomial-time algorithms.

Generalized linear mixed models are useful in studying hierarchical data with possibly non-Gaussian responses. However, the intractability of likelihood functions poses challenges for estimation. We develop a new method suitable for this problem, called imputation maximization stochastic approximation (IMSA). For each iteration, IMSA first imputes latent variables/random effects, then maximizes over the complete data likelihood, and finally moves the estimate towards the new maximizer while preserving a proportion of the previous value. The limiting point of IMSA satisfies a self-consistency property and can be less biased in finite samples than the maximum likelihood estimator solved by score-equation based stochastic approximation (ScoreSA). Numerically, IMSA can also be advantageous over ScoreSA in achieving more stable convergence and respecting the parameter ranges under various transformations such as nonnegative variance components. This is corroborated through our simulation studies where IMSA consistently outperforms ScoreSA.

We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

Image segmentation is the process of partitioning the image into significant regions easier to analyze. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the Conjugate Gradient algorithm (CG) for image segmentation, based on the Hidden Markov Random Field. Since derivatives are not available for this expression, finite differences are used in the CG algorithm to approximate the first derivative. The approach is evaluated using a number of publicly available images, where ground truth is known. The Dice Coefficient is used as an objective criterion to measure the quality of segmentation. The results show that the proposed CG approach compares favorably with other variants of Hidden Markov Random Field segmentation algorithms.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司