In this paper, we consider a class of possibly nonconvex, nonsmooth and non-Lipschitz optimization problems arising in many contemporary applications such as machine learning, variable selection and image processing. To solve this class of problems, we propose a proximal gradient method with extrapolation and line search (PGels). This method is developed based on a special potential function and successfully incorporates both extrapolation and non-monotone line search, which are two simple and efficient accelerating techniques for the proximal gradient method. Thanks to the line search, this method allows more flexibilities in choosing the extrapolation parameters and updates them adaptively at each iteration if a certain line search criterion is not satisfied. Moreover, with proper choices of parameters, our PGels reduces to many existing algorithms. We also show that, under some mild conditions, our line search criterion is well defined and any cluster point of the sequence generated by PGels is a stationary point of our problem. In addition, by assuming the Kurdyka-${\L}$ojasiewicz exponent of the objective in our problem, we further analyze the local convergence rate of two special cases of PGels, including the widely used non-monotone proximal gradient method as one case. Finally, we conduct some numerical experiments for solving the $\ell_1$ regularized logistic regression problem and the $\ell_{1\text{-}2}$ regularized least squares problem. Our numerical results illustrate the efficiency of PGels and show the potential advantage of combining two accelerating techniques.
In this work we propose a new type of efficient deep-unrolling networks for solving imaging inverse problems. Classical deep-unrolling methods require full forward operator and its adjoint across each layer, and hence can be computationally more expensive than other end-to-end methods such as FBP-ConvNet, especially in 3D image reconstruction tasks. We propose a stochastic (ordered-subsets) extension of the Learned Primal-Dual (LPD) which is a state-of-the-art unrolling network. In our unrolling network, we only use subsets of the forward and adjoint operator, to achieve computational efficiency. We provide theoretical analysis of a special case within our LSPD framework, suggesting that our LSPD network has the potential to achieve the same accuracy of full batch LPD network with only accessing the subsets of operators. Our numerical results demonstrate the effectiveness of our approach in X-ray CT imaging task, showing that our networks achieve similar reconstruction accuracies as the full-batch LPD, while requiring only a fraction of the computation.
Optimization problems with set submodular objective functions have many real-world applications. In discrete scenarios, where the same item can be selected more than once, the domain is generalized from a 2-element set to a bounded integer lattice. In this work, we consider the problem of maximizing a monotone submodular function on the bounded integer lattice subject to a cardinality constraint. In particular, we focus on maximizing DR-submodular functions, i.e., functions defined on the integer lattice that exhibit the diminishing returns property. Given any epsilon > 0, we present a randomized algorithm with probabilistic guarantees of O(1 - 1/e - epsilon) approximation, using a framework inspired by a Stochastic Greedy algorithm developed for set submodular functions by Mirzasoleiman et al. We then show that, on synthetic DR-submodular functions, applying our proposed algorithm on the integer lattice is faster than the alternatives, including reducing a target problem to the set domain and then applying the fastest known set submodular maximization algorithm.
The sharpest known high probability generalization bounds for uniformly stable algorithms (Feldman, Vondr\'{a}k, 2018, 2019), (Bousquet, Klochkov, Zhivotovskiy, 2020) contain a generally inevitable sampling error term of order $\Theta(1/\sqrt{n})$. When applied to excess risk bounds, this leads to suboptimal results in several standard stochastic convex optimization problems. We show that if the so-called Bernstein condition is satisfied, the term $\Theta(1/\sqrt{n})$ can be avoided, and high probability excess risk bounds of order up to $O(1/n)$ are possible via uniform stability. Using this result, we show a high probability excess risk bound with the rate $O(\log n/n)$ for strongly convex and Lipschitz losses valid for \emph{any} empirical risk minimization method. This resolves a question of Shalev-Shwartz, Shamir, Srebro, and Sridharan (2009). We discuss how $O(\log n/n)$ high probability excess risk bounds are possible for projected gradient descent in the case of strongly convex and Lipschitz losses without the usual smoothness assumption.
Automated Scoring (AS), the natural language processing task of scoring essays and speeches in an educational testing setting, is growing in popularity and being deployed across contexts from government examinations to companies providing language proficiency services. However, existing systems either forgo human raters entirely, thus harming the reliability of the test, or score every response by both human and machine thereby increasing costs. We target the spectrum of possible solutions in between, making use of both humans and machines to provide a higher quality test while keeping costs reasonable to democratize access to AS. In this work, we propose a combination of the existing paradigms, sampling responses to be scored by humans intelligently. We propose reward sampling and observe significant gains in accuracy (19.80% increase on average) and quadratic weighted kappa (QWK) (25.60% on average) with a relatively small human budget (30% samples) using our proposed sampling. The accuracy increase observed using standard random and importance sampling baselines are 8.6% and 12.2% respectively. Furthermore, we demonstrate the system's model agnostic nature by measuring its performance on a variety of models currently deployed in an AS setting as well as pseudo models. Finally, we propose an algorithm to estimate the accuracy/QWK with statistical guarantees (Our code is available at //git.io/J1IOy).
We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD) is one of the most popular algorithms in distributed machine learning. However, its convergence properties for these complicated nonconvex problems is still largely unknown, because of the current technical limit. Therefore, in this paper, we propose to analyze the algorithm through a simpler but nontrivial nonconvex problem - streaming PCA, which helps us to understand Aync-MSGD better even for more general problems. Specifically, we establish the asymptotic rate of convergence of Async-MSGD for streaming PCA by diffusion approximation. Our results indicate a fundamental tradeoff between asynchrony and momentum: To ensure convergence and acceleration through asynchrony, we have to reduce the momentum (compared with Sync-MSGD). To the best of our knowledge, this is the first theoretical attempt on understanding Async-MSGD for distributed nonconvex stochastic optimization. Numerical experiments on both streaming PCA and training deep neural networks are provided to support our findings for Async-MSGD.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.