亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. We show however, that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before} and after deployment are useless for decision making as they made no change in the data distribution. These results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 樣本 · PDE · 采樣法 · 馬爾可夫鏈蒙特卡羅 ·
2024 年 1 月 23 日

Bayesian sampling is an important task in statistics and machine learning. Over the past decade, many ensemble-type sampling methods have been proposed. In contrast to the classical Markov chain Monte Carlo methods, these new methods deploy a large number of interactive samples, and the communication between these samples is crucial in speeding up the convergence. To justify the validity of these sampling strategies, the concept of interacting particles naturally calls for the mean-field theory. The theory establishes a correspondence between particle interactions encoded in a set of coupled ODEs/SDEs and a PDE that characterizes the evolution of the underlying distribution. This bridges numerical algorithms with the PDE theory used to show convergence in time. Many mathematical machineries are developed to provide the mean-field analysis, and we showcase two such examples: The coupling method and the compactness argument built upon the martingale strategy. The former has been deployed to show the convergence of ensemble Kalman sampler and ensemble Kalman inversion, and the latter will be shown to be immensely powerful in proving the validity of the Vlasov-Boltzmann simulator.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

Graph neural networks (GNNs) excel in modeling relational data such as biological, social, and transportation networks, but the underpinnings of their success are not well understood. Traditional complexity measures from statistical learning theory fail to account for observed phenomena like the double descent or the impact of relational semantics on generalization error. Motivated by experimental observations of ``transductive'' double descent in key networks and datasets, we use analytical tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. Our results illuminate the nuances of learning on homophilic versus heterophilic data and predict double descent whose existence in GNNs has been questioned by recent work. We show how risk is shaped by the interplay between the graph noise, feature noise, and the number of training labels. Our findings apply beyond stylized models, capturing qualitative trends in real-world GNNs and datasets. As a case in point, we use our analytic insights to improve performance of state-of-the-art graph convolution networks on heterophilic datasets.

Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.

Polynomial approximations of functions are widely used in scientific computing. In certain applications, it is often desired to require the polynomial approximation to be non-negative (resp. non-positive), or bounded within a given range, due to constraints posed by the underlying physical problems. Efficient numerical methods are thus needed to enforce such conditions. In this paper, we discuss effective numerical algorithms for polynomial approximation under non-negativity constraints. We first formulate the constrained optimization problem, its primal and dual forms, and then discuss efficient first-order convex optimization methods, with a particular focus on high dimensional problems. Numerical examples are provided, for up to $200$ dimensions, to demonstrate the effectiveness and scalability of the methods.

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.

For appropriate Gaussian processes, as a corollary of the majorizing measure theorem, Michel Talagrand (1987) proved that the event that the supremum is significantly larger than its expectation can be covered by a set of half-spaces whose sum of measures is small. We prove a conjecture of Talagrand that is the analog of this result in the Bernoulli-$p$ setting, and answer a question of Talagrand on the analogous result for general positive empirical processes.

Optimization under uncertainty is important in many applications, particularly to inform policy and decision making in areas such as public health. A key source of uncertainty arises from the incorporation of environmental variables as inputs into computational models or simulators. Such variables represent uncontrollable features of the optimization problem and reliable decision making must account for the uncertainty they propagate to the simulator outputs. Often, multiple, competing objectives are defined from these outputs such that the final optimal decision is a compromise between different goals. Here, we present emulation-based optimization methodology for such problems that extends expected quantile improvement (EQI) to address multi-objective optimization. Focusing on the practically important case of two objectives, we use a sequential design strategy to identify the Pareto front of optimal solutions. Uncertainty from the environmental variables is integrated out using Monte Carlo samples from the simulator. Interrogation of the expected output from the simulator is facilitated by use of (Gaussian process) emulators. The methodology is demonstrated on an optimization problem from public health involving the dispersion of anthrax spores across a spatial terrain. Environmental variables include meteorological features that impact the dispersion, and the methodology identifies the Pareto front even when there is considerable input uncertainty.

In modern computational materials science, deep learning has shown the capability to predict interatomic potentials, thereby supporting and accelerating conventional simulations. However, existing models typically sacrifice either accuracy or efficiency. Moreover, lightweight models are highly demanded for offering simulating systems on a considerably larger scale at reduced computational costs. A century ago, Felix Bloch demonstrated how leveraging the equivariance of the translation operation on a crystal lattice (with geometric symmetry) could significantly reduce the computational cost of determining wavefunctions and accurately calculate material properties. Here, we introduce a lightweight equivariant interaction graph neural network (LEIGNN) that can enable accurate and efficient interatomic potential and force predictions in crystals. Rather than relying on higher-order representations, LEIGNN employs a scalar-vector dual representation to encode equivariant features. By extracting both local and global structures from vector representations and learning geometric symmetry information, our model remains lightweight while ensuring prediction accuracy and robustness through the equivariance. Our results show that LEIGNN consistently outperforms the prediction performance of the representative baselines and achieves significant efficiency across diverse datasets, which include catalysts, molecules, and organic isomers. Finally, to further validate the predicted interatomic potentials from our model, we conduct classical molecular dynamics (MD) and ab initio MD simulation across various systems, including solid, liquid, and gas. It is found that LEIGNN can achieve the accuracy of ab initio MD and retain the computational efficiency of classical MD across all examined systems, demonstrating its accuracy, efficiency, and universality.

Deterministic communication is required for applications of several industry verticals including manufacturing, automotive, financial, and health care, etc. These applications rely on reliable and time-synchronized delivery of information among the communicating devices. Therefore, large delay variations in packet delivery or inaccuracies in time synchronization cannot be tolerated. In particular, the industrial revolution on digitization, connectivity of digital and physical systems, and flexible production design require deterministic and time-synchronized communication. A network supporting deterministic communication guarantees data delivery in a specified time with high reliability. The IEEE 802.1 TSN task group is developing standards to provide deterministic communication through IEEE 802 networks. The IEEE 802.1AS standard defines time synchronization mechanism for accurate distribution of time among the communicating devices. The time synchronization accuracy depends on the accurate calculation of the residence time which is the time between the ingress and the egress ports of the bridge and includes the processing, queuing, transmission, and link latency of the timing information. This paper discusses time synchronization mechanisms supported in current wired and wireless integrated systems.

北京阿比特科技有限公司