亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Cancer Registration Support System (CaReSS), built by the Cancer Registry of Norway (CRN), is a complex real-world socio-technical software system that undergoes continuous evolution in its implementation. Consequently, continuous testing of CaReSS with automated testing tools is needed such that its dependability is always ensured. Towards automated testing of a key software subsystem of CaReSS, i.e., GURI, we present a real-world application of an extension to the open-source tool EvoMaster, which automatically generates test cases with evolutionary algorithms. We named the extension EvoClass, which enhances EvoMaster with a machine learning classifier to reduce the overall testing cost. This is imperative since testing with EvoMaster involves sending many requests to GURI deployed in different environments, including the production environment, whose performance and functionality could potentially be affected by many requests. The machine learning classifier of EvoClass can predict whether a request generated by EvoMaster will be executed successfully or not; if not, the classifier filters out such requests, consequently reducing the number of requests to be executed on GURI. We evaluated EvoClass on ten GURI versions over four years in three environments: development, testing, and production. Results showed that EvoClass can significantly reduce the testing cost of evolving GURI without reducing testing effectiveness (measured as rule coverage) across all three environments, as compared to the default EvoMaster. Overall, EvoClass achieved ~31% of overall cost reduction. Finally, we report our experiences and lessons learned that are equally valuable for researchers and practitioners.

相關內容

In this era of artificial intelligence, deep neural networks like Convolutional Neural Networks (CNNs) have emerged as front-runners, often surpassing human capabilities. These deep networks are often perceived as the panacea for all challenges. Unfortunately, a common downside of these networks is their ''black-box'' character, which does not necessarily mirror the operation of biological neural systems. Some even have millions/billions of learnable (tunable) parameters, and their training demands extensive data and time. Here, we integrate the principles of biological neurons in certain layer(s) of CNNs. Specifically, we explore the use of neuro-science-inspired computational models of the Lateral Geniculate Nucleus (LGN) and simple cells of the primary visual cortex. By leveraging such models, we aim to extract image features to use as input to CNNs, hoping to enhance training efficiency and achieve better accuracy. We aspire to enable shallow networks with a Push-Pull Combination of Receptive Fields (PP-CORF) model of simple cells as the foundation layer of CNNs to enhance their learning process and performance. To achieve this, we propose a two-tower CNN, one shallow tower and the other as ResNet 18. Rather than extracting the features blindly, it seeks to mimic how the brain perceives and extracts features. The proposed system exhibits a noticeable improvement in the performance (on an average of $5\%-10\%$) on CIFAR-10, CIFAR-100, and ImageNet-100 datasets compared to ResNet-18. We also check the efficiency of only the Push-Pull tower of the network.

Explainability in Graph Neural Networks (GNNs) is a new field growing in the last few years. In this publication we address the problem of determining how important is each neighbor for the GNN when classifying a node and how to measure the performance for this specific task. To do this, various known explainability methods are reformulated to get the neighbor importance and four new metrics are presented. Our results show that there is almost no difference between the explanations provided by gradient-based techniques in the GNN domain. In addition, many explainability techniques failed to identify important neighbors when GNNs without self-loops are used.

When it comes to security in the modern world, things have improved a lot since the early 2000s. Hypertext Transfer Protocol Secure (HTTPS) and Transport Layer Security (TLS) have made the transfer of our data across the internet much safer than years prior, and the advent of VPNs and private browsing have only compounded that. However, the gaming industry has been notoriously behind the curve when it comes to security, most notably with Massively Multiplayer Online (MMO) games, which due to the intrinsic nature of their architecture, have an astounding amount of ground to cover. In this paper, the authors discuss the challenges that MMO developers face when trying to design a secure game, as well as some more modern approaches to security that will help improve the industry moving forward. The authors also highlight a few real-life examples of exploits and breaches that have happened and look at how they were mitigated.

This study addresses a gap in the utilization of Reinforcement Learning (RL) and Machine Learning (ML) techniques in solving the Stochastic Vehicle Routing Problem (SVRP) that involves the challenging task of optimizing vehicle routes under uncertain conditions. We propose a novel end-to-end framework that comprehensively addresses the key sources of stochasticity in SVRP and utilizes an RL agent with a simple yet effective architecture and a tailored training method. Through comparative analysis, our proposed model demonstrates superior performance compared to a widely adopted state-of-the-art metaheuristic, achieving a significant 3.43% reduction in travel costs. Furthermore, the model exhibits robustness across diverse SVRP settings, highlighting its adaptability and ability to learn optimal routing strategies in varying environments. The publicly available implementation of our framework serves as a valuable resource for future research endeavors aimed at advancing RL-based solutions for SVRP.

Counterfactual Regret Minimization (CFR) and its variants developed based upon Regret Matching (RM) have been considered to be the best method to solve incomplete information extensive form games. In addition to RM and CFR, Fictitious Play (FP) is another equilibrium computation algorithm in normal form games. Previous experience has shown that the convergence rate of FP is slower than RM and FP is difficult to use in extensive form games. However, recent research has made improvements in both issues. Firstly, Abernethy proposed a new FP variant sync FP, which has faster convergence rate than RM+. Secondly, Qi introduced FP into extensive form games and proposed Pure CFR (PCFR). This paper combines these two improvements, resulting in a new algorithm sync PCFR. In our experiment, the convergence rate of sync PCFR is approximately an order of magnitude faster than CFR+ (state-of-the-art algorithm for equilibrium computation in incomplete information extensive form games), while requiring less memory in an iteration.

Language Representation Models (LRMs) trained with real-world data may capture and exacerbate undesired bias and cause unfair treatment of people in various demographic groups. Several techniques have been investigated for applying interventions to LRMs to remove bias in benchmark evaluations on, for example, word embeddings. However, the negative side effects of debiasing interventions are usually not revealed in the downstream tasks. We propose xGAP-DEBIAS, a set of evaluations on assessing the fairness of debiasing. In this work, We examine four debiasing techniques on a real-world text classification task and show that reducing biasing is at the cost of degrading performance for all demographic groups, including those the debiasing techniques aim to protect. We advocate that a debiasing technique should have good downstream performance with the constraint of ensuring no harm to the protected group.

This paper proposes a new approach to achieve direct visual servoing (DVS) based on discrete orthogonal moments (DOMs). DVS is performed in such a way that the extraction of geometric primitives, matching, and tracking steps in the conventional feature-based visual servoing pipeline can be bypassed. Although DVS enables highly precise positioning, it suffers from a limited convergence domain and poor robustness due to the extreme nonlinearity of the cost function to be minimized and the presence of redundant data between visual features. To tackle these issues, we propose a generic and augmented framework that considers DOMs as visual features. By using the Tchebichef, Krawtchouk, and Hahn moments as examples, we not only present the strategies for adaptively tuning the parameters and order of the visual features but also exhibit an analytical formulation of the associated interaction matrix. Simulations demonstrate the robustness and accuracy of our approach, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our approach.

Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

北京阿比特科技有限公司