亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose Context Diffusion, a diffusion-based framework that enables image generation models to learn from visual examples presented in context. Recent work tackles such in-context learning for image generation, where a query image is provided alongside context examples and text prompts. However, the quality and fidelity of the generated images deteriorate when the prompt is not present, demonstrating that these models are unable to truly learn from the visual context. To address this, we propose a novel framework that separates the encoding of the visual context and preserving the structure of the query images. This results in the ability to learn from the visual context and text prompts, but also from either one of them. Furthermore, we enable our model to handle few-shot settings, to effectively address diverse in-context learning scenarios. Our experiments and user study demonstrate that Context Diffusion excels in both in-domain and out-of-domain tasks, resulting in an overall enhancement in image quality and fidelity compared to counterpart models.

相關內容

We introduce ECG-Image-Kit, an open-source toolbox for generating synthetic ECG images with realistic artifacts from time-series data, and showcase its application in developing algorithms for data augmentation and ECG image digitization. Synthetic data is generated by producing distortionless ECG images on a standard ECG paper background. Subsequently, various distortions, including handwritten text artifacts, wrinkles, creases, and perspective transformations, are applied to these ECG images. The artifacts and text are synthetically generated, excluding personally identifiable information. The toolbox is used for data augmentation in the 2024 PhysioNet Challenge on Digitization and Classification of ECG Images. As a case study, we employed ECG-Image-Kit to create an ECG image dataset of 21,801 records from the PhysioNet QT database. A denoising convolutional neural network (DnCNN)-based model was developed and trained on this synthetic dataset and used to convert the synthetically generated images back into time-series data for evaluation. SNR was calculated to assess the quality of image digitization compared to the ground truth ECG time-series. The results show an average signal recovery SNR of 11.17 +/- 9.19 dB, indicating the synthetic ECG image dataset's significance for training deep learning models. For clinical evaluation, we measured the error between the estimated and ground-truth time-series data's RR and QT-intervals. The accuracy of the estimated RR and QT-intervals also suggests that the respective clinical parameters are maintained. These results demonstrate the effectiveness of a deep learning-based pipeline in accurately digitizing paper ECGs and highlight a generative approach to digitization.

Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.

We present Flow-Guided Density Ratio Learning (FDRL), a simple and scalable approach to generative modeling which builds on the stale (time-independent) approximation of the gradient flow of entropy-regularized f-divergences introduced in DGflow. In DGflow, the intractable time-dependent density ratio is approximated by a stale estimator given by a GAN discriminator. This is sufficient in the case of sample refinement, where the source and target distributions of the flow are close to each other. However, this assumption is invalid for generation and a naive application of the stale estimator fails due to the large chasm between the two distributions. FDRL proposes to train a density ratio estimator such that it learns from progressively improving samples during the training process. We show that this simple method alleviates the density chasm problem, allowing FDRL to generate images of dimensions as high as $128\times128$, as well as outperform existing gradient flow baselines on quantitative benchmarks. We also show the flexibility of FDRL with two use cases. First, unconditional FDRL can be easily composed with external classifiers to perform class-conditional generation. Second, FDRL can be directly applied to unpaired image-to-image translation with no modifications needed to the framework. Code is publicly available at //github.com/ajrheng/FDRL.

We present HyperQB, a push-button QBF-based bounded model checker for hyperproperties. HyperQB takes as input a NuSMV model and a formula expressed in the temporal logic HyperLTL. Our QBF-based technique allows HyperQB to seamlessly deal with quantifier alternations. Based on the selection of either bug hunting or synthesis, the instances of counterexamples (for negated formula) or witnesses (for synthesis of positive formulas) are returned. We report on successful and effective verification for a rich set of experiments on a variety of case studies, including information-flow security, concurrent data structures, path planning for robots, co-termination, deniability, intransitivity of non-interference, and secrecy-preserving refinement. We also rigorously compare and contrast HyperQB with existing tools for model checking hyperporperties.

Existing learning-based solutions to medical image segmentation have two important shortcomings. First, for most new segmentation task, a new model has to be trained or fine-tuned. This requires extensive resources and machine learning expertise, and is therefore often infeasible for medical researchers and clinicians. Second, most existing segmentation methods produce a single deterministic segmentation mask for a given image. In practice however, there is often considerable uncertainty about what constitutes the correct segmentation, and different expert annotators will often segment the same image differently. We tackle both of these problems with Tyche, a model that uses a context set to generate stochastic predictions for previously unseen tasks without the need to retrain. Tyche differs from other in-context segmentation methods in two important ways. (1) We introduce a novel convolution block architecture that enables interactions among predictions. (2) We introduce in-context test-time augmentation, a new mechanism to provide prediction stochasticity. When combined with appropriate model design and loss functions, Tyche can predict a set of plausible diverse segmentation candidates for new or unseen medical images and segmentation tasks without the need to retrain.

With tools like GitHub Copilot, automatic code suggestion is no longer a dream in software engineering. These tools, based on large language models, are typically trained on massive corpora of code mined from unvetted public sources. As a result, these models are susceptible to data poisoning attacks where an adversary manipulates the model's training by injecting malicious data. Poisoning attacks could be designed to influence the model's suggestions at run time for chosen contexts, such as inducing the model into suggesting insecure code payloads. To achieve this, prior attacks explicitly inject the insecure code payload into the training data, making the poison data detectable by static analysis tools that can remove such malicious data from the training set. In this work, we demonstrate two novel attacks, COVERT and TROJANPUZZLE, that can bypass static analysis by planting malicious poison data in out-of-context regions such as docstrings. Our most novel attack, TROJANPUZZLE, goes one step further in generating less suspicious poison data by never explicitly including certain (suspicious) parts of the payload in the poison data, while still inducing a model that suggests the entire payload when completing code (i.e., outside docstrings). This makes TROJANPUZZLE robust against signature-based dataset-cleansing methods that can filter out suspicious sequences from the training data. Our evaluation against models of two sizes demonstrates that both COVERT and TROJANPUZZLE have significant implications for practitioners when selecting code used to train or tune code-suggestion models.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司