In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic (IPL) raises some technical and conceptual issues. We relate Sandqvist's (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and completeness arguments, thereby demonstrating the naturality of Sandqvist's constructions. This naturality includes Sandqvist's treatment of disjunction that is based on its second-order or elimination-rule presentation. These constructions embody not just validity, but certain forms of objects of justifications. This analysis is taken a step further by showing that from the perspective of validity, Sandqvist's semantics can also be viewed as the natural disjunction in a category of sheaves.
This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first explicit method without anchoring to achieve last iterate convergence rates for $\rho$-comonotone problems while only requiring $\rho > -\tfrac{1}{2L}$. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.
We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t L\'{e}vy process with constant scale and arbitrary degrees of freedom. The model is observed at high frequency over an extending period, under which we can quantify how the sampling frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution is not closed under convolution, making it difficult to estimate all the parameters fully based on the high-frequency time scale. To efficiently deal with the intricate nature from both theoretical and computational points of view, we propose a two-step quasi-likelihood analysis: first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient vector and the scale parameter; then, we construct the sequence of the unit-period cumulative residuals to estimate the remaining degrees of freedom. In particular, using full data in the first step causes a problem stemming from the small-time Cauchy approximation, showing the need for data thinning.
Microcanonical gradient descent is a sampling procedure for energy-based models allowing for efficient sampling of distributions in high dimension. It works by transporting samples from a high-entropy distribution, such as Gaussian white noise, to a low-energy region using gradient descent. We put this model in the framework of normalizing flows, showing how it can often overfit by losing an unnecessary amount of entropy in the descent. As a remedy, we propose a mean-field microcanonical gradient descent that samples several weakly coupled data points simultaneously, allowing for better control of the entropy loss while paying little in terms of likelihood fit. We study these models in the context of financial time series, illustrating the improvements on both synthetic and real data.
We introduce a new algorithm for solving unconstrained discrete-time optimal control problems. Our method follows a direct multiple shooting approach, and consists of applying the SQP method together with an $\ell_2$ augmented Lagrangian primal-dual merit function. We use the LQR algorithm to efficiently solve the primal component of the Newton-KKT system, and use a dual LQR backward pass to solve its dual component. We also present a new parallel algorithm for solving the dual component of the Newton-KKT system in $O(\log(N))$ parallel time, where $N$ is the number of stages. Combining it with (S\"{a}rkk\"{a} and Garc\'{i}a-Fern\'{a}ndez, 2023), we are able to solve the full Newton-KKT system in $O(\log(N))$ parallel time. The remaining parts of our method have constant parallel time complexity per iteration. Therefore, this paper provides, for the first time, a practical, highly parallelizable (for example, with a GPU) method for solving nonlinear discrete-time optimal control problems. As our algorithm is a specialization of NPSQP (Gill et al. 1992), it inherits its generic properties, including global convergence, fast local convergence, and the lack of need for second order corrections or dimension expansions, improving on existing direct multiple shooting approaches such as acados (Verschueren et al. 2022), ALTRO (Howell et al. 2019), GNMS (Giftthaler et al. 2018), FATROP (Vanroye et al. 2023), and FDDP (Mastalli et al. 2020).
Local search is a powerful heuristic in optimization and computer science, the complexity of which has been studied in the white box and black box models. In the black box model, we are given a graph $G = (V,E)$ and oracle access to a function $f : V \to \mathbb{R}$. The local search problem is to find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few queries to the oracle as possible. We show that if a graph $G$ admits a lazy, irreducible, and reversible Markov chain with stationary distribution $\pi$, then the randomized query complexity of local search on $G$ is $\Omega\left( \frac{\sqrt{n}}{t_{mix} \cdot \exp(3\sigma)}\right)$, where $t_{mix}$ is the mixing time of the chain and $\sigma = \max_{u,v \in V(G)} \frac{\pi(v)}{\pi(u)}.$ This theorem formally establishes a connection between the query complexity of local search and the mixing time of the fastest mixing Markov chain for the given graph. We also get several corollaries that lower bound the complexity as a function of the spectral gap, one of which slightly improves a result from prior work.
The strength of materials, like many problems in the natural sciences, spans multiple length and time scales, and the solution has to balance accuracy and performance. Peierls stress is one of the central concepts in crystal plasticity that measures the strength through the resistance of a dislocation to plastic flow. The determination of Peierls stress involves a multiscale nature depending on both elastic lattice responses and the energy landscape of crystal slips. Material screening by strength via the Peierls stress from first-principles calculations is computationally intractable for the nonlocal characteristics of dislocations, and not included in the state-of-the-art computational material databases. In this work, we propose a physics-transfer framework to learn the physics of crystal plasticity from empirical atomistic simulations and then predict the Peierls stress from chemically accurate density functional theory-based calculations of material parameters. Notably, the strengths of single-crystalline metals can be predicted from a few single-point calculations for the deformed lattice and on the {\gamma} surface, allowing efficient, high-throughput screening for material discovery. Uncertainty quantification is carried out to assess the accuracy of models and sources of errors, showing reduced physical and system uncertainties in the predictions by elevating the fidelity of training models. This physics-transfer framework can be generalized to other problems facing the accuracy-performance dilemma, by harnessing the hierarchy of physics in the multiscale models of materials science.
The extended persistence diagram is an invariant of piecewise linear functions, which is known to be stable under perturbations of functions with respect to the bottleneck distance as introduced by Cohen-Steiner, Edelsbrunner, and Harer. We address the question of universality, which asks for the largest possible stable distance on extended persistence diagrams, showing that a more discriminative variant of the bottleneck distance is universal. Our result applies more generally to settings where persistence diagrams are considered only up to a certain degree. We achieve our results by establishing a functorial construction and several characteristic properties of relative interlevel set homology, which mirror the classical Eilenberg--Steenrod axioms. Finally, we contrast the bottleneck distance with the interleaving distance of sheaves on the real line by showing that the latter is not intrinsic, let alone universal. This particular result has the further implication that the interleaving distance of Reeb graphs is not intrinsic either.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.