亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Deep Leakage from Gradient (DLG) attack has emerged as a prevalent and highly effective method for extracting sensitive training data by inspecting exchanged gradients. This approach poses a substantial threat to the privacy of individuals and organizations alike. This research presents a comprehensive analysis of the gradient leakage method when applied specifically to transformer-based models. Through meticulous examination, we showcase the capability to accurately recover data solely from gradients and rigorously investigate the conditions under which gradient attacks can be executed, providing compelling evidence. Furthermore, we reevaluate the approach of introducing additional noise on gradients as a protective measure against gradient attacks. To address this, we outline a theoretical proof that analyzes the associated privacy costs within the framework of differential privacy. Additionally, we affirm the convergence of the Stochastic Gradient Descent (SGD) algorithm under perturbed gradients. The primary objective of this study is to augment the understanding of gradient leakage attack and defense strategies while actively contributing to the development of privacy-preserving techniques specifically tailored for transformer-based models. By shedding light on the vulnerabilities and countermeasures associated with gradient leakage, this research aims to foster advancements in safeguarding sensitive data and upholding privacy in the context of transformer-based models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 語言模型化 · 大語言模型 · ·
2024 年 1 月 15 日

Parameter efficient finetuning has emerged as a viable solution for improving the performance of Large Language Models without requiring massive resources and compute. Prior work on multilingual evaluation has shown that there is a large gap between the performance of LLMs on English and other languages. Further, there is also a large gap between the performance of smaller open-source models and larger LLMs. Finetuning can be an effective way to bridge this gap and make language models more equitable. In this work, we finetune the LLaMA-7B and Mistral-7B models on synthetic multilingual instruction tuning data to determine its effect on model performance on five downstream tasks covering twenty three languages in all. Additionally, we experiment with various parameters, such as rank for low-rank adaptation and values of quantisation to determine their effects on downstream performance and find that higher rank and higher quantisation values benefit low-resource languages. We find that parameter efficient finetuning of smaller open source models sometimes bridges the gap between the performance of these models and the larger ones, however, English performance can take a hit. We also find that finetuning sometimes improves performance on low-resource languages, while degrading performance on high-resource languages.

Adsorption energy, a reactivity descriptor, should be accurately assessed for efficient catalyst screening. This evaluation requires determining the lowest energy across various adsorption configurations on the catalytic surface. While graph neural networks (GNNs) have gained popularity as a machine learning approach for computing the energy of catalyst systems, they rely heavily on atomic spatial coordinates and often lack clarity in their interpretations. Recent advancements in language models have broadened their applicability to predicting catalytic properties, allowing us to bypass the complexities of graph representation. These models are adept at handling textual data, making it possible to incorporate observable features in a human-readable format. However, language models encounter challenges in accurately predicting the energy of adsorption configurations, typically showing a high mean absolute error (MAE) of about 0.71 eV. Our study addresses this limitation by introducing a self-supervised multi-modal learning approach, termed graph-assisted pretraining. This method significantly reduces the MAE to 0.35 eV through a combination of data augmentation, achieving comparable accuracy with DimeNet++ while using 0.4% of its training data size. Furthermore, the Transformer encoder at the core of the language model can provide insights into the feature focus through its attention scores. This analysis shows that our multimodal training effectively redirects the model's attention toward relevant adsorption configurations from adsorbate-related features, enhancing prediction accuracy and interpretability.

We provide a quantitative assessment of welfare in the classical model of risk-sharing and exchange under uncertainty. We prove three kinds of results. First, that in an equilibrium allocation, the scope for improving individual welfare by a given margin (an $\ve$-improvement) vanishes as the number of states increases. Second, that the scope for a change in aggregate resources that may be distributed to enhance individual welfare by a given margin also vanishes. Equivalently: in an inefficient allocation, for a given level of resource sub-optimality (as measured by the coefficient of resource under-utilization), the possibilities for enhancing welfare by perturbing aggregate resources decrease exponentially to zero with the number of states. Finally, we consider efficient risk-sharing in standard models of uncertainty aversion with multiple priors, and show that, in an inefficient allocation, certain sets of priors shrink with the size of the state space.

This paper proposes two methods for causal additive models with unobserved variables (CAM-UV). CAM-UV assumes that the causal functions take the form of generalized additive models and that latent confounders are present. First, we propose a method that leverages prior knowledge for efficient causal discovery. Then, we propose an extension of this method for inferring causality in time series data. The original CAM-UV algorithm differs from other existing causal function models in that it does not seek the causal order between observed variables, but rather aims to identify the causes for each observed variable. Therefore, the first proposed method in this paper utilizes prior knowledge, such as understanding that certain variables cannot be causes of specific others. Moreover, by incorporating the prior knowledge that causes precedes their effects in time, we extend the first algorithm to the second method for causal discovery in time series data. We validate the first proposed method by using simulated data to demonstrate that the accuracy of causal discovery increases as more prior knowledge is accumulated. Additionally, we test the second proposed method by comparing it with existing time series causal discovery methods, using both simulated data and real-world data.

Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.

College students with ADHD respond positively to simple socially assistive robots (SARs) that monitor attention and provide non-verbal feedback, but studies have been done only in brief in-lab sessions. We present an initial design and evaluation of an in-dorm SAR study companion for college students with ADHD. This work represents the introductory stages of an ongoing user-centered, participatory design process. In a three-week within-subjects user study, university students (N=11) with self-reported symptoms of adult ADHD had a SAR study companion in their dorm room for two weeks and a computer-based system for one week. Toward developing SARs for long-term, in-dorm use, we focus on 1) evaluating the usability and desire for SAR study companions by college students with ADHD and 2) collecting participant feedback about the SAR design and functionality. Participants responded positively to the robot; after one week of regular use, 91% (10 of 11) chose to continue using the robot voluntarily in the second week.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司