The 5G networks have extensively promoted the growth of mobile users and novel applications, and with the skyrocketing user requests for a large amount of popular content, the consequent content delivery services (CDSs) have been bringing a heavy load to mobile service providers. As a key mission in intelligent networks management, understanding and predicting the distribution of CDSs benefits many tasks of modern network services such as resource provisioning and proactive content caching for content delivery networks. However, the revolutions in novel ubiquitous network architectures led by ultra-dense networks (UDNs) make the task extremely challenging. Specifically, conventional methods face the challenges of insufficient spatio precision, lacking generalizability, and complex multi-feature dependencies of user requests, making their effectiveness unreliable in CDSs prediction under 5G UDNs. In this paper, we propose to adopt a series of encoding and sampling methods to model CDSs of known and unknown areas at a tailored fine-grained level. Moreover, we design a spatio-temporal-social multi-feature extraction framework for CDSs hotspots prediction, in which a novel edge-enhanced graph convolution block is proposed to encode dynamic CDSs networks based on the social relationships and the spatio features. Besides, we introduce the Long-Short Term Memory (LSTM) to further capture the temporal dependency. Extensive performance evaluations with real-world measurement data collected in two mobile content applications demonstrate the effectiveness of our proposed solution, which can improve the prediction area under the curve (AUC) by 40.5% compared to the state-of-the-art proposals at a spatio granularity of 76m, with up to 80% of the unknown areas.
Colored Petri nets offer a compact and user friendly representation of the traditional P/T nets and colored nets with finite color ranges can be unfolded into the underlying P/T nets, however, at the expense of an exponential explosion in size. We present two novel techniques based on static analysis in order to reduce the size of unfolded colored nets. The first method identifies colors that behave equivalently and groups them into equivalence classes, potentially reducing the number of used colors. The second method overapproximates the sets of colors that can appear in places and excludes colors that can never be present in a given place. Both methods are complementary and the combined approach allows us to significantly reduce the size of multiple colored Petri nets from the Model Checking Contest benchmark. We compare the performance of our unfolder with state-of-the-art techniques implemented in the tools MCC, Spike and ITS-Tools, and while our approach is competitive w.r.t. unfolding time, it also outperforms the existing approaches both in the size of unfolded nets as well as in the number of answered model checking queries from the 2021 Model Checking Contest.
We consider the online planning problem for a team of agents to discover and track an unknown and time-varying number of moving objects from onboard sensor measurements with uncertain measurement-object origins. Since the onboard sensors have a limited field-of-view, the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new information-based multi-objective multi-agent control problem, cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, which admits low-cost suboptimal solutions via greedy search with a tight optimality bound. The resulting planning algorithm has a linear complexity in the number of objects and measurements across the sensors, and quadratic in the number of agents. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.
As the uplink sensing has the advantage of easy implementation, it attracts great attention in integrated sensing and communication (ISAC) system. This paper presents an uplink ISAC system based on multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) technology. The mutual information (MI) is introduced as a unified metric to evaluate the performance of communication and sensing. In this paper, firstly, the upper and lower bounds of communication and sensing MI are derived in details based on the interaction between communication and sensing. And the ISAC waveform is optimized by maximizing the weighted sum of sensing and communication MI. The Monte Carlo simulation results show that, compared with other waveform optimization schemes, the proposed ISAC scheme has the best overall performance.
Private 5G networks will soon be ubiquitous across the future-generation smart wireless access infrastructures hosting a wide range of performance-critical applications. A high-performing User Plane Function (UPF) in the data plane is critical to achieving such stringent performance goals, as it governs fast packet processing and supports several key control-plane operations. Based on a private 5G prototype implementation and analysis, it is imperative to perform dynamic resource management and orchestration at the UPF. This paper leverages Mobile Edge Cloud-Intelligent Agent (MEC-IA), a logically centralized entity that proactively distributes resources at UPF for various service types, significantly reducing the tail latency experienced by the user requests while maximizing resource utilization. Extending the MEC-IA functionality to MEC layers further incurs data plane latency reduction. Based on our extensive simulations, under skewed uRLLC traffic arrival, the MEC-IA assisted bestfit UPF-MEC scheme reduces the worst-case latency of UE requests by up to 77.8% w.r.t. baseline. Additionally, the system can increase uRLLC connectivity gain by 2.40x while obtaining 40% CapEx savings.
To meet next-generation IoT application demands, edge computing moves processing power and storage closer to the network edge to minimise latency and bandwidth utilisation. Edge computing is becoming popular as a result of these benefits, but resource management is still challenging. Researchers are utilising AI models to solve the challenge of resource management in edge computing systems. However, existing simulation tools are only concerned with typical resource management policies, not the adoption and implementation of AI models for resource management, especially. Consequently, researchers continue to face significant challenges, making it hard and time-consuming to use AI models when designing novel resource management policies for edge computing with existing simulation tools. To overcome these issues, we propose a lightweight Python-based toolkit called EdgeAISim for the simulation and modelling of AI models for designing resource management policies in edge computing environments. In EdgeAISim, we extended the basic components of the EdgeSimPy framework and developed new AI-based simulation models for task scheduling, energy management, service migration, network flow scheduling, and mobility support for edge computing environments. In EdgeAISim, we have utilised advanced AI models such as Multi-Armed Bandit with Upper Confidence Bound, Deep Q-Networks, Deep Q-Networks with Graphical Neural Network, and ActorCritic Network to optimize power usage while efficiently managing task migration within the edge computing environment. The performance of these proposed models of EdgeAISim is compared with the baseline, which uses a worst-fit algorithm-based resource management policy in different settings. Experimental results indicate that EdgeAISim exhibits a substantial reduction in power consumption, highlighting the compelling success of power optimization strategies in EdgeAISim.
The challenge of achieving passwordless user authentication is real given the prevalence of web applications that keep asking passwords. Complicating this issue further, in an enterprise environment, a single sign-on (SSO) service is often maintained but not all applications can be integrated with it. We envision a passwordless future which provides a frictionless and trustworthy online experience for users by integrating credential management and federated identity systems. In this regard, our implementation ROSTAM offers a dashboard that presents all applications the user can access with a single click after a passwordless SSO. The security of web passwords on the credential manager is ensured with a Master Key, rather than a Master Password, so that encrypted passwords can remain secure even if stolen from the server. We propose and implement novel techniques for synchronization (pairing) and recovery of this Master Key. We compare our solution to previous work using different evaluation frameworks, demonstrating that our hybrid solution combines the benefits of credential management and federated identity systems.
During collaboration in XR (eXtended Reality), users typically share and interact with virtual objects in a common, shared virtual environment. Specifically, collaboration among users in Mixed Reality (MR) requires knowing their position, movement, and understanding of the visual scene surrounding their physical environments. Otherwise, one user could move an important virtual object to a position blocked by the physical environment for others. However, even for a single physical environment, 3D reconstruction takes a long time and the produced 3D data is typically very large in size. Also, these large amounts of 3D data take a long time to be streamed to receivers making real-time updates on the rendered scene challenging. Furthermore, many collaboration systems in MR require multiple devices, which take up space and make setup difficult. To address these challenges, in this paper, we describe a single-device system called Collaborative Adaptive Mixed Reality Environment (CAMRE). We build CAMRE using the scene understanding capabilities of HoloLens 2 devices to create shared MR virtual environments for each connected user and demonstrate using a Leader-Follower(s) paradigm: faster reconstruction and scene update times due to smaller data. Consequently, multiple users can receive shared, synchronized, and close-to-real-time latency virtual scenes from a chosen Leader, based on their physical position and movement. We also illustrate other expanded features of CAMRE MR virtual environment such as navigation using a real-time virtual mini-map and X-ray vision for handling adaptive wall opacity. We share several experimental results that evaluate the performance of CAMRE in terms of the network latency in sharing virtual objects and other capabilities.
Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.