亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A crucial problem in reinforcement learning is learning the optimal policy. We study this in tabular infinite-horizon discounted Markov decision processes under the online setting. The existing algorithms either fail to achieve regret optimality or have to incur a high memory and computational cost. In addition, existing optimal algorithms all require a long burn-in time in order to achieve optimal sample efficiency, i.e., their optimality is not guaranteed unless sample size surpasses a high threshold. We address both open problems by introducing a model-free algorithm that employs variance reduction and a novel technique that switches the execution policy in a slow-yet-adaptive manner. This is the first regret-optimal model-free algorithm in the discounted setting, with the additional benefit of a low burn-in time.

相關內容

Inverse reinforcement learning (IRL) algorithms often rely on (forward) reinforcement learning or planning over a given time horizon to compute an approximately optimal policy for a hypothesized reward function and then match this policy with expert demonstrations. The time horizon plays a critical role in determining both the accuracy of reward estimate and the computational efficiency of IRL algorithms. Interestingly, an effective time horizon shorter than the ground-truth value often produces better results faster. This work formally analyzes this phenomenon and provides an explanation: the time horizon controls the complexity of an induced policy class and mitigates overfitting with limited data. This analysis leads to a principled choice of the effective horizon for IRL. It also prompts us to reexamine the classic IRL formulation: it is more natural to learn jointly the reward and the effective horizon together rather than the reward alone with a given horizon. Our experimental results confirm the theoretical analysis.

We study optimality for the safety-constrained Markov decision process which is the underlying framework for safe reinforcement learning. Specifically, we consider a constrained Markov decision process (with finite states and finite actions) where the goal of the decision maker is to reach a target set while avoiding an unsafe set(s) with certain probabilistic guarantees. Therefore the underlying Markov chain for any control policy will be multichain since by definition there exists a target set and an unsafe set. The decision maker also has to be optimal (with respect to a cost function) while navigating to the target set. This gives rise to a multi-objective optimization problem. We highlight the fact that Bellman's principle of optimality may not hold for constrained Markov decision problems with an underlying multichain structure (as shown by the counterexample due to Haviv. We resolve the counterexample by formulating the aforementioned multi-objective optimization problem as a zero-sum game and thereafter construct an asynchronous value iteration scheme for the Lagrangian (similar to Shapley's algorithm). Finally, we consider the reinforcement learning problem for the same and construct a modified $Q$-learning algorithm for learning the Lagrangian from data. We also provide a lower bound on the number of iterations required for learning the Lagrangian and corresponding error bounds.

We study the regret of reinforcement learning from offline data generated by a fixed behavior policy in an infinite-horizon discounted Markov decision process (MDP). While existing analyses of common approaches, such as fitted $Q$-iteration (FQI), suggest a $O(1/\sqrt{n})$ convergence for regret, empirical behavior exhibits \emph{much} faster convergence. In this paper, we present a finer regret analysis that exactly characterizes this phenomenon by providing fast rates for the regret convergence. First, we show that given any estimate for the optimal quality function $Q^*$, the regret of the policy it defines converges at a rate given by the exponentiation of the $Q^*$-estimate's pointwise convergence rate, thus speeding it up. The level of exponentiation depends on the level of noise in the \emph{decision-making} problem, rather than the estimation problem. We establish such noise levels for linear and tabular MDPs as examples. Second, we provide new analyses of FQI and Bellman residual minimization to establish the correct pointwise convergence guarantees. As specific cases, our results imply $O(1/n)$ regret rates in linear cases and $\exp(-\Omega(n))$ regret rates in tabular cases. We extend our findings to general function approximation by extending our results to regret guarantees based on $L_p$-convergence rates for estimating $Q^*$ rather than pointwise rates, where $L_2$ guarantees for nonparametric $Q^*$-estimation can be ensured under mild conditions.

Recently, DARPA launched the ShELL program, which aims to explore how experience sharing can benefit distributed lifelong learning agents in adapting to new challenges. In this paper, we address this issue by conducting both theoretical and empirical research on distributed multi-task reinforcement learning (RL), where a group of $N$ agents collaboratively solves $M$ tasks without prior knowledge of their identities. We approach the problem by formulating it as linearly parameterized contextual Markov decision processes (MDPs), where each task is represented by a context that specifies the transition dynamics and rewards. To tackle this problem, we propose an algorithm called DistMT-LSVI. First, the agents identify the tasks, and then they exchange information through a central server to derive $\epsilon$-optimal policies for the tasks. Our research demonstrates that to achieve $\epsilon$-optimal policies for all $M$ tasks, a single agent using DistMT-LSVI needs to run a total number of episodes that is at most $\tilde{\mathcal{O}}({d^3H^6(\epsilon^{-2}+c_{\rm sep}^{-2})}\cdot M/N)$, where $c_{\rm sep}>0$ is a constant representing task separability, $H$ is the horizon of each episode, and $d$ is the feature dimension of the dynamics and rewards. Notably, DistMT-LSVI improves the sample complexity of non-distributed settings by a factor of $1/N$, as each agent independently learns $\epsilon$-optimal policies for all $M$ tasks using $\tilde{\mathcal{O}}(d^3H^6M\epsilon^{-2})$ episodes. Additionally, we provide numerical experiments conducted on OpenAI Gym Atari environments that validate our theoretical findings.

In reinforcement learning, the objective is almost always defined as a \emph{cumulative} function over the rewards along the process. However, there are many optimal control and reinforcement learning problems in various application fields, especially in communications and networking, where the objectives are not naturally expressed as summations of the rewards. In this paper, we recognize the prevalence of non-cumulative objectives in various problems, and propose a modification to existing algorithms for optimizing such objectives. Specifically, we dive into the fundamental building block for many optimal control and reinforcement learning algorithms: the Bellman optimality equation. To optimize a non-cumulative objective, we replace the original summation operation in the Bellman update rule with a generalized operation corresponding to the objective. Furthermore, we provide sufficient conditions on the form of the generalized operation as well as assumptions on the Markov decision process under which the globally optimal convergence of the generalized Bellman updates can be guaranteed. We demonstrate the idea experimentally with the bottleneck objective, i.e., the objectives determined by the minimum reward along the process, on classical optimal control and reinforcement learning tasks, as well as on two network routing problems on maximizing the flow rates.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

北京阿比特科技有限公司