亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, the problem of low-latency communication and computation resource allocation for digital twin (DT) over wireless networks is investigated. In the considered model, multiple physical devices in the physical network (PN) needs to frequently offload the computation task related data to the digital network twin (DNT), which is generated and controlled by the central server. Due to limited energy budget of the physical devices, both computation accuracy and wireless transmission power must be considered during the DT procedure. This joint communication and computation problem is formulated as an optimization problem whose goal is to minimize the overall transmission delay of the system under total PN energy and DNT model accuracy constraints. To solve this problem, an alternating algorithm with iteratively solving device scheduling, power control, and data offloading subproblems. For the device scheduling subproblem, the optimal solution is obtained in closed form through the dual method. For the special case with one physical device, the optimal number of transmission times is reveled. Based on the theoretical findings, the original problem is transformed into a simplified problem and the optimal device scheduling can be found. Numerical results verify that the proposed algorithm can reduce the transmission delay of the system by up to 51.2\% compared to the conventional schemes.

相關內容

Explanation:無線網。 Publisher:Springer。 SIT:

This paper investigates a novel hybrid worker recruitment problem where the mobile crowd sensing and computing (MCSC) platform employs workers to serve MCSC tasks with diverse quality requirements and budget constraints, under uncertainties in workers' participation and their local workloads.We propose a hybrid worker recruitment framework consisting of offline and online trading modes. The former enables the platform to overbook long-term workers (services) to cope with dynamic service supply via signing contracts in advance, which is formulated as 0-1 integer linear programming (ILP) with probabilistic constraints of service quality and budget.Besides, motivated by the existing uncertainties which may render long-term workers fail to meet the service quality requirement of each task, we augment our methodology with an online temporary worker recruitment scheme as a backup Plan B to support seamless service provisioning for MCSC tasks, which also represents a 0-1 ILP problem. To tackle these problems which are proved to be NP-hard, we develop three algorithms, namely, i) exhaustive searching, ii) unique index-based stochastic searching with risk-aware filter constraint, iii) geometric programming-based successive convex algorithm, which achieve the optimal or sub-optimal solutions. Experimental results demonstrate our effectiveness in terms of service quality, time efficiency, etc.

Recent advancement in online optimization and control has provided novel tools to study online linear quadratic regulator (LQR) problems, where cost matrices are varying adversarially over time. However, the controller parameterization of existing works may not satisfy practical conditions like sparsity due to physical connections. In this work, we study online linear quadratic Gaussian problems with a given linear constraint imposed on the controller. Inspired by the recent work of [1] which proposed, for a linearly constrained policy optimization of an offline LQR, a second order method equipped with a Riemannian metric that emerges naturally in the context of optimal control problems, we propose online optimistic Newton on manifold (OONM) which provides an online controller based on the prediction on the first and second order information of the function sequence. To quantify the proposed algorithm, we leverage the notion of regret defined as the sub-optimality of its cumulative cost to that of a (locally) minimizing controller sequence and provide the regret bound in terms of the path-length of the minimizer sequence. Simulation results are also provided to verify the property of OONM.

Terrestrial networks form the fundamental infrastructure of modern communication systems, serving more than 4 billion users globally. However, terrestrial networks are facing a wide range of challenges, from coverage and reliability to interference and congestion. As the demands of the 6G era are expected to be much higher, it is crucial to address these challenges to ensure a robust and efficient communication infrastructure for the future. To address these problems, Non-terrestrial Network (NTN) has emerged to be a promising solution. NTNs are communication networks that leverage airborne (e.g., unmanned aerial vehicles) and spaceborne vehicles (e.g., satellites) to facilitate ultra-reliable communications and connectivity with high data rates and low latency over expansive regions. This article aims to provide a comprehensive survey on the utilization of network slicing, Artificial Intelligence/Machine Learning (AI/ML), and Open Radio Access Network (ORAN) to address diverse challenges of NTNs from the perspectives of both academia and industry. Particularly, we first provide an in-depth tutorial on NTN and the key enabling technologies including network slicing, AI/ML, and ORAN. Then, we provide a comprehensive survey on how network slicing and AI/ML have been leveraged to overcome the challenges that NTNs are facing. Moreover, we present how ORAN can be utilized for NTNs. Finally, we highlight important challenges, open issues, and future research directions of NTN in the 6G era.

Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.

In this paper, a unified transformation method in learned image compression(LIC) is proposed from the perspective of modulation. Firstly, the quantization in LIC is considered as a generalized channel with additive uniform noise. Moreover, the LIC is interpreted as a particular communication system according to the consistency in structures and optimization objectives. Thus, the technology of communication systems can be applied to guide the design of modules in LIC. Furthermore, a unified transform method based on signal modulation (TSM) is defined. In the view of TSM, the existing transformation methods are mathematically reduced to a linear modulation. A series of transformation methods, e.g. TPM and TJM, are obtained by extending to nonlinear modulation. The experimental results on various datasets and backbone architectures verify that the effectiveness and robustness of the proposed method. More importantly, it further confirms the feasibility of guiding LIC design from a communication perspective. For example, when backbone architecture is hyperprior combining context model, our method achieves 3.52$\%$ BD-rate reduction over GDN on Kodak dataset without increasing complexity.

Having good knowledge of terrain information is essential for improving the performance of various downstream tasks on complex terrains, especially for the locomotion and navigation of legged robots. We present a novel framework for neural urban terrain reconstruction with uncertainty estimations. It generates dense robot-centric elevation maps online from sparse LiDAR observations. We design a novel pre-processing and point features representation approach that ensures high robustness and computational efficiency when integrating multiple point cloud frames. A Bayesian-GAN model then recovers the detailed terrain structures while simultaneously providing the pixel-wise reconstruction uncertainty. We evaluate the proposed pipeline through extensive simulation and real-world experiments. It demonstrates efficient terrain reconstruction with high quality and real-time performance on a mobile platform, which further benefits the downstream tasks of legged robots. (See //kin-zhang.github.io/ndem/ for more details.)

Purpose: Over the last few decades, the development of the hardware and software has enabled the application of advanced systems. In the robotics field, the UI design is an intriguing area to be explored due to the creation of devices with a wide range of functionalities in a reduced size. Moreover, the idea of using the same UI to control several systems arouses a great interest considering that this involves less learning effort and time for the users. Therefore, this paper will present a mobile application to control two industrial robots with four modes of operation. Design/methodology/approach: The smartphone was selected to be the interface due to its wide range of capabilities and the MIT Inventor App was used to create the application, whose environment is supported by Android smartphones. For the validation, ROS was used since it is a fundamental framework utilised in industrial robotics and the Arduino Uno was used to establish the data transmission between the smartphone and the board NVIDIA Jetson TX2. In MIT Inventor App, the graphical interface was created to visualize the options available in the app whereas two scripts in python were programmed to perform the simulations in ROS and carry out the tests. Findings: The results indicated that the use of the sliders to control the robots is more favourable than the Orientation Sensor due to the sensibility of the sensor and human limitations to hold the smartphone perfectly still. Another important finding was the limitations of the autonomous mode, in which the robot grabs an object. In this case, the configuration of the Kinect camera and the controllers has a significant impact on the success of the simulation. Finally, it was observed that the delay was appropriate despite the use of the Arduino UNO to transfer the data between the Smartphone and the Nvidia Jetson TX2.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司