亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exploring data is crucial in data analysis, as it helps users understand and interpret the data more effectively. However, performing effective data exploration requires in-depth knowledge of the dataset and expertise in data analysis techniques. Not being familiar with either can create obstacles that make the process time-consuming and overwhelming for data analysts. To address this issue, we introduce InsightPilot, an LLM (Large Language Model)-based, automated data exploration system designed to simplify the data exploration process. InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining. Then, these analysis intents are concretized by issuing corresponding intentional queries (IQueries) to create a meaningful and coherent exploration sequence. In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts and simplifies the exploration process for users. By employing an LLM to iteratively collaborate with a state-of-the-art insight engine via IQueries, InsightPilot is effective in analyzing real-world datasets, enabling users to gain valuable insights through natural language inquiries. We demonstrate the effectiveness of InsightPilot in a case study, showing how it can help users gain valuable insights from their datasets.

相關內容

Structure prediction tasks such as event extraction require an in-depth understanding of the output structure and sub-task dependencies, thus they still heavily rely on task-specific training data to obtain reasonable performance. Due to the high cost of human annotation, low-resource event extraction, which requires minimal human cost, is urgently needed in real-world information extraction applications. We propose to synthesize data instances given limited seed demonstrations to boost low-resource event extraction performance. We propose STAR, a structure-to-text data generation method that first generates complicated event structures (Y) and then generates input passages (X), all with Large Language Models. We design fine-grained step-by-step instructions and the error cases and quality issues identified through self-reflection can be self-refined. Our experiments indicate that data generated by STAR can significantly improve the low-resource event extraction performance and they are even more effective than human-curated data points in some cases.

Tabular data is the most common format to publish and exchange structured data online. A clear example is the growing number of open data portals published by all types of public administrations. However, exploitation of these data sources is currently limited to technical people able to programmatically manipulate and digest such data. As an alternative, we propose the use of chatbots to offer a conversational interface to facilitate the exploration of tabular data sources. With our approach, any regular citizen can benefit and leverage them. Moreover, our chatbots are not manually created: instead, they are automatically generated from the data source itself thanks to the instantiation of a configurable collection of conversation patterns.

The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs' ability to produce high-quality answers. In particular, an effective approach for complex question-and-answer tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful ones to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationship demonstrate the effectiveness of our method. Our code will be available at //github.com/shizhediao/active-prompt.

Data plays a crucial role in machine learning. However, in real-world applications, there are several problems with data, e.g., data are of low quality; a limited number of data points lead to under-fitting of the machine learning model; it is hard to access the data due to privacy, safety and regulatory concerns. Synthetic data generation offers a promising new avenue, as it can be shared and used in ways that real-world data cannot. This paper systematically reviews the existing works that leverage machine learning models for synthetic data generation. Specifically, we discuss the synthetic data generation works from several perspectives: (i) applications, including computer vision, speech, natural language, healthcare, and business; (ii) machine learning methods, particularly neural network architectures and deep generative models; (iii) privacy and fairness issue. In addition, we identify the challenges and opportunities in this emerging field and suggest future research directions.

Re-rankers, which order retrieved documents with respect to the relevance score on the given query, have gained attention for the information retrieval (IR) task. Rather than fine-tuning the pre-trained language model (PLM), the large-scale language model (LLM) is utilized as a zero-shot re-ranker with excellent results. While LLM is highly dependent on the prompts, the impact and the optimization of the prompts for the zero-shot re-ranker are not explored yet. Along with highlighting the impact of optimization on the zero-shot re-ranker, we propose a novel discrete prompt optimization method, Constrained Prompt generation (Co-Prompt), with the metric estimating the optimum for re-ranking. Co-Prompt guides the generated texts from PLM toward optimal prompts based on the metric without parameter update. The experimental results demonstrate that Co-Prompt leads to outstanding re-ranking performance against the baselines. Also, Co-Prompt generates more interpretable prompts for humans against other prompt optimization methods.

Evaluating automatically-generated text summaries is a challenging task. While there have been many interesting approaches, they still fall short of human evaluations. We present RISE, a new approach for evaluating summaries by leveraging techniques from information retrieval. RISE is first trained as a retrieval task using a dual-encoder retrieval setup, and can then be subsequently utilized for evaluating a generated summary given an input document, without gold reference summaries. RISE is especially well suited when working on new datasets where one may not have reference summaries available for evaluation. We conduct comprehensive experiments on the SummEval benchmark (Fabbri et al., 2021) and the results show that RISE has higher correlation with human evaluations compared to many past approaches to summarization evaluation. Furthermore, RISE also demonstrates data-efficiency and generalizability across languages.

Pretraining is the preliminary and fundamental step in developing capable language models (LM). Despite this, pretraining data design is critically under-documented and often guided by empirically unsupported intuitions. To address this, we pretrain 28 1.5B parameter decoder-only models, training on data curated (1) at different times, (2) with varying toxicity and quality filters, and (3) with different domain compositions. First, we quantify the effect of pretraining data age. A temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning. Second, we explore the effect of quality and toxicity filters, showing a trade-off between performance on standard benchmarks and risk of toxic generations. Our findings indicate there does not exist a one-size-fits-all solution to filtering training data. We also find that the effects of different types of filtering are not predictable from text domain characteristics. Lastly, we empirically validate that the inclusion of heterogeneous data sources, like books and web, is broadly beneficial and warrants greater prioritization. These findings constitute the largest set of experiments to validate, quantify, and expose many undocumented intuitions about text pretraining, which we hope will help support more informed data-centric decisions in LM development.

Mechanistic simulators are an indispensable tool for epidemiology to explore the behavior of complex, dynamic infections under varying conditions and navigate uncertain environments. Agent-based models (ABMs) are an increasingly popular simulation paradigm that can represent the heterogeneity of contact interactions with granular detail and agency of individual behavior. However, conventional ABM frameworks are not differentiable and present challenges in scalability; due to which it is non-trivial to connect them to auxiliary data sources. In this paper, we introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation. GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources. This provides an array of practical benefits for calibration, forecasting, and evaluating policy interventions. We demonstrate the efficacy of GradABM via extensive experiments with real COVID-19 and influenza datasets.

Foundation Models (FMs), such as BERT, GPT, ViT, and CLIP, have demonstrated remarkable success in a wide range of applications, driven by their ability to leverage vast amounts of data for pre-training. However, optimizing FMs often requires access to sensitive data, raising privacy concerns and limiting their applicability in certain domains. In this paper, we introduce the concept of Federated Foundation Models (FFMs), a novel approach that combines the benefits of FMs and Federated Learning (FL) to enable privacy-preserving and collaborative learning across multiple institutions. We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application. We further provide formal definitions of FFM tasks, including FFM pre-training, FFM fine-tuning, and federated prompt engineering, allowing for more personalized and context-aware models while maintaining data privacy. Moreover, we explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge unlocks the potential for optimizing FMs using newly generated private data at edges. We present experiments and evaluations comparing the performance of FFMs to traditional FMs on various downstream tasks, demonstrating the effectiveness of our approach in preserving privacy, reducing overfitting, and improving model generalizability. The proposed Federated Foundation Models offer a flexible and scalable framework for training large language models in a privacy-preserving manner, paving the way for future advancements in both FM pre-training and federated learning.

Despite the many use cases for large language models (LLMs) in the design of chatbots in various industries and the research showing the importance of personalizing chatbots to cater to different personality traits, little work has been done to evaluate whether the behaviors of personalized LLMs can reflect certain personality traits accurately and consistently. We consider studying the behavior of LLM-based simulated agents which refer to as LLM personas and present a case study with GPT-3.5 (text-davinci-003) to investigate whether LLMs can generate content with consistent, personalized traits when assigned Big Five personality types and gender roles. We created 320 LLM personas (5 females and 5 males for each of the 32 Big Five personality types) and prompted them to complete the classic 44-item Big Five Inventory (BFI) and then write an 800-word story about their childhood. Results showed that LLM personas' self-reported BFI scores are consistent with their assigned personality types, with large effect sizes found on all five traits. Moreover, significant correlations were found between assigned personality types and some Linguistic Inquiry and Word Count (LIWC) psycholinguistic features of their writings. For instance, extroversion is associated with pro-social and active words, and neuroticism is associated with words related to negative emotions and mental health. Besides, we only found significant differences in using technological and cultural words in writing between LLM-generated female and male personas. This work provides a first step for further research on personalized LLMs and their applications in Human-AI conversation.

北京阿比特科技有限公司