In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a penalization function of the form $\mathcal{O}(1/h^{1+\delta})$, where $h$ denotes the mesh size and $\delta$ is a user-dependent parameter. We then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity, and boundedness (with $h^{\delta}$-dependency), and we derive updated error estimates for both discrete energy- and $L^{2}$-norms. The originality of the error analysis relies specifically on the use of conforming interpolants of the exact solution. All theoretical results are supported by numerical evidence.
We propose and analyse an augmented mixed finite element method for the Navier--Stokes equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and no-slip boundary conditions. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we use a fixed point strategies to show the existence and uniqueness of continuous and discrete solutions under the assumption of sufficiently small data. The method is constructed using any compatible finite element pair (conforming or non-conforming) for velocity and pressure as dictated by Stokes inf-sup stability, while for vorticity any generic discrete space (of arbitrary order) can be used. We establish optimal a priori error estimates. Finally, we provide a set of numerical tests in 2D and 3D illustrating the behaviour of the scheme as well as verifying the theoretical convergence rates.
In this paper, we propose a semigroup method for solving high-dimensional elliptic partial differential equations (PDEs) and the associated eigenvalue problems based on neural networks. For the PDE problems, we reformulate the original equations as variational problems with the help of semigroup operators and then solve the variational problems with neural network (NN) parameterization. The main advantages are that no mixed second-order derivative computation is needed during the stochastic gradient descent training and that the boundary conditions are taken into account automatically by the semigroup operator. Unlike popular methods like PINN \cite{raissi2019physics} and Deep Ritz \cite{weinan2018deep} where the Dirichlet boundary condition is enforced solely through penalty functions and thus changes the true solution, the proposed method is able to address the boundary conditions without penalty functions and it gives the correct true solution even when penalty functions are added, thanks to the semigroup operator. For eigenvalue problems, a primal-dual method is proposed, efficiently resolving the constraint with a simple scalar dual variable and resulting in a faster algorithm compared with the BSDE solver \cite{han2020solving} in certain problems such as the eigenvalue problem associated with the linear Schr\"odinger operator. Numerical results are provided to demonstrate the performance of the proposed methods.
It is well-known that an algorithm exists which approximates the NP-complete problem of Set Cover within a factor of ln(n), and it was recently proven that this approximation ratio is optimal unless P = NP. This optimality result is the product of many advances in characterizations of NP, in terms of interactive proof systems and probabilistically checkable proofs (PCP), and improvements to the analyses thereof. However, as a result, it is difficult to extract the development of Set Cover approximation bounds from the greater scope of proof system analysis. This paper attempts to present a chronological progression of results on lower-bounding the approximation ratio of Set Cover. We analyze a series of proofs of progressively better bounds and unify the results under similar terminologies and frameworks to provide an accurate comparison of proof techniques and their results. We also treat many preliminary results as black-boxes to better focus our analysis on the core reductions to Set Cover instances. The result is alternative versions of several hardness proofs, beginning with initial inapproximability results and culminating in a version of the proof that ln(n) is a tight lower bound.
This work recasts time-dependent optimal control problems governed by partial differential equations in a Dynamic Mode Decomposition with control framework. Indeed, since the numerical solution of such problems requires a lot of computational effort, we rely on this specific data-driven technique, using both solution and desired state measurements to extract the underlying system dynamics. Thus, after the Dynamic Mode Decomposition operators construction, we reconstruct and perform future predictions for all the variables of interest at a lower computational cost with respect to the standard space-time discretized models. We test the methodology in terms of relative reconstruction and prediction errors on a boundary control for a Graetz flow and on a distributed control with Stokes constraints.
We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.
We consider mixed finite element methods with exact symmetric stress tensors. We derive a new quasi-optimal a priori error estimate uniformly valid with respect to the compressibility. For the a posteriori error analysis we consider the Prager-Synge hypercircle principle and introduce a new estimate uniformly valid in the incompressible limit. All estimates are validated by numerical examples.
We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.
In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.