亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Originally suggested for the blood testing problem by Dorfman in 1943, an idea of Group Testing (GT) has found many applications in other fields as well. Among many (binomial) GT procedures introduced since then, in 1990, Yao and Hwang proposed the Pairwise Testing Algorithm (PTA) and demonstrated that PTA is the \emph{unique} optimal nested GT procedure provided the probability of contamination lies in $\left[1-\frac{\sqrt{2}}{2},\frac{3-\sqrt{5}}{2}\right]$. Despite the fundamental nature of the result, PTA did not receive considerable attention in the literature. In particular, even its basic probabilistic properties remained unexplored. In this paper, we fill the gap by providing an exhaustive characterization of probabilistic PTA properties.

相關內容

We study the problem of unbiased estimation of expectations with respect to (w.r.t.) $\pi$ a given, general probability measure on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ that is absolutely continuous with respect to a standard Gaussian measure. We focus on simulation associated to a particular class of diffusion processes, sometimes termed the Schr\"odinger-F\"ollmer Sampler, which is a simulation technique that approximates the law of a particular diffusion bridge process $\{X_t\}_{t\in [0,1]}$ on $\mathbb{R}^d$, $d\in \mathbb{N}_0$. This latter process is constructed such that, starting at $X_0=0$, one has $X_1\sim \pi$. Typically, the drift of the diffusion is intractable and, even if it were not, exact sampling of the associated diffusion is not possible. As a result, \cite{sf_orig,jiao} consider a stochastic Euler-Maruyama scheme that allows the development of biased estimators for expectations w.r.t.~$\pi$. We show that for this methodology to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, for arbitrary $\epsilon>0$, the associated cost is $\mathcal{O}(\epsilon^{-5})$. We then introduce an alternative approach that provides unbiased estimates of expectations w.r.t.~$\pi$, that is, it does not suffer from the time discretization bias or the bias related with the approximation of the drift function. We prove that to achieve a mean square error of $\mathcal{O}(\epsilon^2)$, the associated cost is, with high probability, $\mathcal{O}(\epsilon^{-2}|\log(\epsilon)|^{2+\delta})$, for any $\delta>0$. We implement our method on several examples including Bayesian inverse problems.

Consider words of length $n$. The set of all periods of a word of length $n$ is a subset of $\{0,1,2,\ldots,n-1\}$. However, any subset of $\{0,1,2,\ldots,n-1\}$ is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko have proposed to encode the set of periods of a word into an $n$ long binary string, called an autocorrelation, where a one at position $i$ denotes a period of $i$. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for length $n$, denoted $\kappa_n$. They conjectured that $\ln(\kappa_n)$ asymptotically converges to a constant times $\ln^2(n)$. If improved lower bounds for $\ln(\kappa_n)/\ln^2(n)$ were proposed in 2001, the question of a tight upper bound has remained opened since Guibas and Odlyzko's paper. Here, we exhibit an upper bound for this fraction, which implies its convergence and closes this long standing conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a generalization of autocorrelations which encodes the overlaps between two strings.

The paper studies non-stationary high-dimensional vector autoregressions of order $k$, VAR($k$). Additional deterministic terms such as trend or seasonality are allowed. The number of time periods, $T$, and number of coordinates, $N$, are assumed to be large and of the same order. Under such regime the first-order asymptotics of the Johansen likelihood ratio (LR), Pillai-Barlett, and Hotelling-Lawley tests for cointegration is derived: Test statistics converge to non-random integrals. For more refined analysis, the paper proposes and analyzes a modification of the Johansen test. The new test for the absence of cointegration converges to the partial sum of the Airy$_1$ point process. Supporting Monte Carlo simulations indicate that the same behavior persists universally in many situations beyond our theorems. The paper presents an empirical implementation of the approach to the analysis of stocks in S$\&$P$100$ and of cryptocurrencies. The latter example has strong presence of multiple cointegrating relationships, while the former is consistent with the null of no cointegration.

The significant presence of demand charges in electric bills motivates large-load customers to utilize energy storage to reduce the peak procurement from the grid. We herein study the problem of energy storage allocation for peak minimization, under the online setting where irrevocable decisions are sequentially made without knowing future demands. The problem is uniquely challenging due to (i) the coupling of online decisions across time imposed by the inventory constraints and (ii) the noncumulative nature of the peak procurement. We apply the CR-Pursuit framework and address the challenges unique to our minimization problem to design an online algorithm achieving the optimal competitive ratio (CR) among all online algorithms. We show that the optimal CR can be computed in polynomial time by solving a linear number of linear-fractional problems. More importantly, we generalize our approach to develop an \emph{anytime-optimal} online algorithm that achieves the best possible CR at any epoch, given the inputs and online decisions so far. The algorithm retains the optimal worst-case performance and attains adaptive average-case performance. Trace-driven simulations show that our algorithm can decrease the peak demand by an extra 19% compared to baseline alternatives under typical settings.

This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function (Stein, 1999, Section 6.7) with Fourier coefficients $\phi$($\alpha$^2 + j^2)^(--$\nu$--1/2). Convergence rates are studied for the joint maximum likelihood estimation of $\nu$ and $\phi$ when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a ''deterministic'' element of a continuous Sobolev space is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.

Transition metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and non-toxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have optimal target absorption energies in the visible region as well as well-defined ground states. Machine learning (ML) accelerated discovery could overcome such challenges by enabling screening of a larger space, but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of Jacobs ladder. To accelerate the discovery of complexes with absorption energies in the visible region while minimizing MR character, we use 2D efficient global optimization to sample candidate low-spin chromophores from multi-million complex spaces. Despite the scarcity (i.e., approx. 0.01\%) of potential chromophores in this large chemical space, we identify candidates with high likelihood (i.e., > 10\%) of computational validation as the ML models improve during active learning, representing a 1,000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-dependent density functional theory verify that 2/3 of candidates have the desired excited state properties. The observation that constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of our construction of a realistic design space and active learning approach.

Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.

The precision matrix that encodes conditional linear dependency relations among a set of variables forms an important object of interest in multivariate analysis. Sparse estimation procedures for precision matrices such as the graphical lasso (Glasso) gained popularity as they facilitate interpretability, thereby separating pairs of variables that are conditionally dependent from those that are independent (given all other variables). Glasso lacks, however, robustness to outliers. To overcome this problem, one typically applies a robust plug-in procedure where the Glasso is computed from a robust covariance estimate instead of the sample covariance, thereby providing protection against outliers. In this paper, we study such estimators theoretically, by deriving and comparing their influence function, sensitivity curves and asymptotic variances.

The parameters of the log-logistic distribution are generally estimated based on classical methods such as maximum likelihood estimation, whereas these methods usually result in severe biased estimates when the data contain outliers. In this paper, we consider several alternative estimators, which not only have closed-form expressions, but also are quite robust to a certain level of data contamination. We investigate the robustness property of each estimator in terms of the breakdown point. The finite sample performance and effectiveness of these estimators are evaluated through Monte Carlo simulations and a real-data application. Numerical results demonstrate that the proposed estimators perform favorably in a manner that they are comparable with the maximum likelihood estimator for the data without contamination and that they provide superior performance in the presence of data contamination.

Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.

北京阿比特科技有限公司