亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Supplier selection and order allocation (SSOA) are key strategic decisions in supply chain management which greatly impact the performance of the supply chain. Although, the SSOA problem has been studied extensively but less attention paid to scalability presents a significant gap preventing adoption of SSOA algorithms by industrial practitioners. This paper presents a novel multi-item, multi-supplier double order allocations with dual-sourcing and penalty constraints across two-tiers of a supply chain, resulting in cooperation and in facilitating supplier preferences to work with other suppliers through bidding. We propose Mixed-Integer Programming models for allocations at individual-tiers as well as an integrated allocations. An application to a real-time large-scale case study of a manufacturing company is presented, which is the largest scale studied in terms of supply chain size and number of variables so far in literature. The use case allows us to highlight how problem formulation and implementation can help reduce computational complexity using Mathematical Programming (MP) and Genetic Algorithm (GA) approaches. The results show an interesting observation that MP outperforms GA to solve SSOA. Sensitivity analysis is presented for sourcing strategy, penalty threshold and penalty factor. The developed model was successfully deployed in a large international sourcing conference with multiple bidding rounds, which helped in more than 10% procurement cost reductions to the manufacturing company.

相關內容

The problem of integrating high-level task planning in the execution loop of a real-world robot architecture remains challenging, as the planning times of traditional symbolic planners explode combinatorially with the number of symbols to plan upon. In this paper, we present Teriyaki, a framework for training Large Language Models (LLMs), and in particular the now well-known GPT-3 model, into neurosymbolic planners compatible with the Planning Domain Definition Language (PDDL). Unlike symbolic approaches, LLMs require a training process. However, their response time scales with the combined length of the input and the output. Hence, LLM-based planners can potentially provide significant performance gains on complex planning problems as the technology matures and becomes more accessible. In this preliminary work, which to our knowledge is the first using LLMs for planning in robotics, we (i) outline a methodology for training LLMs as PDDL solvers, (ii) generate PDDL-compliant planners for two challenging PDDL domains, and (iii) test the planning times and the plan quality associated with the obtained planners, while also comparing them to a state-of-the-art PDDL planner, namely Probe. Results confirm the viability of the approach, with Teriyaki-based planners being able to solve 95.5% of problems in a test data set of 1000 samples, and even generating plans up to 13.5% shorter on average than the employed traditional planner, depending on the domain.

Evaluating the effects of moderation interventions is a task of paramount importance, as it allows assessing the success of content moderation processes. So far, intervention effects have been almost solely evaluated at the aggregated platform or community levels. Here, we carry out a multidimensional evaluation of the user-level effects of the sequence of moderation interventions that targeted r/The_Donald: a community of Donald Trump adherents on Reddit. We demonstrate that the interventions: 1) strongly reduced user activity; 2) slightly increased the diversity of the subreddits in which users participated; 3) slightly reduced user toxicity; and 4) gave way to the sharing of less factual and more politically biased news. Importantly, we also find that interventions having strong community level effects are associated to extreme and diversified user-level reactions. Our results highlight that community-level effects are not always representative of the underlying behavior of individuals or smaller user groups. We conclude by discussing the practical and ethical implications of our results. Overall, our findings can inform the development of targeted moderation interventions and provide useful guidance for policing online platforms.

This paper establishes a structure-preserving numerical scheme for the Cahn--Hilliard equation with degenerate mobility. First, by applying a finite volume method with upwind numerical fluxes to the degenerate Cahn--Hilliard equation rewritten by the scalar auxiliary variable (SAV) approach, we creatively obtain an unconditionally bound-preserving, energy-stable and fully-discrete scheme, which, for the first time, addresses the boundedness of the classical SAV approach under $H^{-1}$-gradient flow. Then, a dimensional-splitting technique is introduced in high-dimensional cases, which greatly reduces the computational complexity while preserves original structural properties. Numerical experiments are presented to verify the bound-preserving and energy-stable properties of the proposed scheme. Finally, by applying the proposed structure-preserving scheme, we numerically demonstrate that surface diffusion can be approximated by the Cahn--Hilliard equation with degenerate mobility and Flory--Huggins potential when the absolute temperature is sufficiently low, which agrees well with the theoretical result by using formal asymptotic analysis.wn theoretically by formal matched asymptotics.

Many problems arising in control require the determination of a mathematical model of the application. This has often to be performed starting from input-output data, leading to a task known as system identification in the engineering literature. One emerging topic in this field is estimation of networks consisting of several interconnected dynamic systems. We consider the linear setting assuming that system outputs are the result of many correlated inputs, hence making system identification severely ill-conditioned. This is a scenario often encountered when modeling complex cybernetics systems composed by many sub-units with feedback and algebraic loops. We develop a strategy cast in a Bayesian regularization framework where any impulse response is seen as realization of a zero-mean Gaussian process. Any covariance is defined by the so called stable spline kernel which includes information on smooth exponential decay. We design a novel Markov chain Monte Carlo scheme able to reconstruct the impulse responses posterior by efficiently dealing with collinearity. Our scheme relies on a variation of the Gibbs sampling technique: beyond considering blocks forming a partition of the parameter space, some other (overlapping) blocks are also updated on the basis of the level of collinearity of the system inputs. Theoretical properties of the algorithm are studied obtaining its convergence rate. Numerical experiments are included using systems containing hundreds of impulse responses and highly correlated inputs.

The scheduling of production resources (such as associating jobs to machines) plays a vital role for the manufacturing industry not only for saving energy but also for increasing the overall efficiency. Among the different job scheduling problems, the JSSP is addressed in this work. JSSP falls into the category of NP-hard COP, in which solving the problem through exhaustive search becomes unfeasible. Simple heuristics such as FIFO, LPT and metaheuristics such as Taboo search are often adopted to solve the problem by truncating the search space. The viability of the methods becomes inefficient for large problem sizes as it is either far from the optimum or time consuming. In recent years, the research towards using DRL to solve COP has gained interest and has shown promising results in terms of solution quality and computational efficiency. In this work, we provide an novel approach to solve the JSSP examining the objectives generalization and solution effectiveness using DRL. In particular, we employ the PPO algorithm that adopts the policy-gradient paradigm that is found to perform well in the constrained dispatching of jobs. We incorporated an OSM in the environment to achieve better generalized learning of the problem. The performance of the presented approach is analyzed in depth by using a set of available benchmark instances and comparing our results with the work of other groups.

We investigate how to efficiently compute the difference result of two (or multiple) conjunctive queries, which is the last operator in relational algebra to be unraveled. The standard approach in practical database systems is to materialize the results for every input query as a separate set, and then compute the difference of two (or multiple) sets. This approach is bottlenecked by the complexity of evaluating every input query individually, which could be very expensive, particularly when there are only a few results in the difference. In this paper, we introduce a new approach by exploiting the structural property of input queries and rewriting the original query by pushing the difference operator down as much as possible. We show that for a large class of difference queries, this approach can lead to a linear-time algorithm, in terms of the input size and (final) output size, i.e., the number of query results that survive from the difference operator. We complete this result by showing the hardness of computing the remaining difference queries in linear time. Although a linear-time algorithm is hard to achieve in general, we also provide some heuristics that can provably improve the standard approach. At last, we compare our approach with standard SQL engines over graph and benchmark datasets. The experiment results demonstrate order-of-magnitude speedups achieved by our approach over the vanilla SQL.

This paper studies algorithmic fairness when the protected attribute is location. To handle protected attributes that are continuous, such as age or income, the standard approach is to discretize the domain into predefined groups, and compare algorithmic outcomes across groups. However, applying this idea to location raises concerns of gerrymandering and may introduce statistical bias. Prior work addresses these concerns but only for regularly spaced locations, while raising other issues, most notably its inability to discern regions that are likely to exhibit spatial unfairness. Similar to established notions of algorithmic fairness, we define spatial fairness as the statistical independence of outcomes from location. This translates into requiring that for each region of space, the distribution of outcomes is identical inside and outside the region. To allow for localized discrepancies in the distribution of outcomes, we compare how well two competing hypotheses explain the observed outcomes. The null hypothesis assumes spatial fairness, while the alternate allows different distributions inside and outside regions. Their goodness of fit is then assessed by a likelihood ratio test. If there is no significant difference in how well the two hypotheses explain the observed outcomes, we conclude that the algorithm is spatially fair.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司