Parallel-in-time algorithms provide an additional layer of concurrency for the numerical integration of models based on time-dependent differential equations. Methods like Parareal, which parallelize across multiple time steps, rely on a computationally cheap and coarse integrator to propagate information forward in time, while a parallelizable expensive fine propagator provides accuracy. Typically, the coarse method is a numerical integrator using lower resolution, reduced order or a simplified model. Our paper proposes to use a physics-informed neural network (PINN) instead. We demonstrate for the Black-Scholes equation, a partial differential equation from computational finance, that Parareal with a PINN coarse propagator provides better speedup than a numerical coarse propagator. Training and evaluating a neural network are both tasks whose computing patterns are well suited for GPUs. By contrast, mesh-based algorithms with their low computational intensity struggle to perform well. We show that moving the coarse propagator PINN to a GPU while running the numerical fine propagator on the CPU further improves Parareal's single-node performance. This suggests that integrating machine learning techniques into parallel-in-time integration methods and exploiting their differences in computing patterns might offer a way to better utilize heterogeneous architectures.
Neuromorphic processors have garnered considerable interest in recent years for their potential in energy-efficient and high-speed computing. The Locally Competitive Algorithm (LCA) has been utilized for power efficient sparse coding on neuromorphic processors, including the first Loihi processor. With the Loihi 2 processor enabling custom neuron models and graded spike communication, more complex implementations of LCA are possible. We present a new implementation of LCA designed for the Loihi 2 processor and perform an initial set of benchmarks comparing it to LCA on CPU and GPU devices. In these experiments LCA on Loihi 2 is orders of magnitude more efficient and faster for large sparsity penalties, while maintaining similar reconstruction quality. We find this performance improvement increases as the LCA parameters are tuned towards greater representation sparsity. Our study highlights the potential of neuromorphic processors, particularly Loihi 2, in enabling intelligent, autonomous, real-time processing on small robots, satellites where there are strict SWaP (small, lightweight, and low power) requirements. By demonstrating the superior performance of LCA on Loihi 2 compared to conventional computing device, our study suggests that Loihi 2 could be a valuable tool in advancing these types of applications. Overall, our study highlights the potential of neuromorphic processors for efficient and accurate data processing on resource-constrained devices.
Neural network models are widely used in a variety of domains, often as black-box solutions, since they are not directly interpretable for humans. The field of explainable artificial intelligence aims at developing explanation methods to address this challenge, and several approaches have been developed over the recent years, including methods for investigating what type of knowledge these models internalise during the training process. Among these, the method of concept detection, investigates which \emph{concepts} neural network models learn to represent in order to complete their tasks. In this work, we present an extension to the method of concept detection, named \emph{concept backpropagation}, which provides a way of analysing how the information representing a given concept is internalised in a given neural network model. In this approach, the model input is perturbed in a manner guided by a trained concept probe for the described model, such that the concept of interest is maximised. This allows for the visualisation of the detected concept directly in the input space of the model, which in turn makes it possible to see what information the model depends on for representing the described concept. We present results for this method applied to a various set of input modalities, and discuss how our proposed method can be used to visualise what information trained concept probes use, and the degree as to which the representation of the probed concept is entangled within the neural network model itself.
In this paper, we conduct an empirical evaluation of Temporal Graph Benchmark (TGB) by extending our Dynamic Graph Library (DyGLib) to TGB. Compared with TGB, we include eleven popular dynamic graph learning methods for more exhaustive comparisons. Through the experiments, we find that (1) some issues need to be addressed in the current version of TGB, including mismatched data statistics, inaccurate evaluation metric computation, and so on; (2) different models depict varying performance across various datasets, which is in line with previous observations; (3) the performance of some baselines can be significantly improved over the reported results in TGB when using DyGLib. This work aims to ease the researchers' efforts in evaluating various dynamic graph learning methods on TGB and attempts to offer results that can be directly referenced in the follow-up research. All the used resources in this project are publicly available at //github.com/yule-BUAA/DyGLib_TGB. This work is in progress, and feedback from the community is welcomed for improvements.
The curse-of-dimensionality (CoD) taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs as Richard Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. In this paper, we develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and samples randomly a subset of these dimensional pieces in each iteration of training PINNs. We theoretically prove the convergence guarantee and other desired properties of the proposed method. We experimentally demonstrate that the proposed method allows us to solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman and the Schr\"{o}dinger equations in thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. For example, we solve nontrivial nonlinear PDEs (the HJB-Lin equation and the BSB equation) in 100,000 dimensions in 6 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, SDGD can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.
The empirical validation of models remains one of the most important challenges in opinion dynamics. In this contribution, we report on recent developments on combining data from survey experiments with computational models of opinion formation. We extend previous work on the empirical assessment of an argument-based model for opinion dynamics in which biased processing is the principle mechanism. While previous work (Banisch & Shamon, in press) has focused on calibrating the micro mechanism with experimental data on argument-induced opinion change, this paper concentrates on the macro level using the empirical data gathered in the survey experiment. For this purpose, the argument model is extended by an external source of balanced information which allows to control for the impact of peer influence processes relative to other noisy processes. We show that surveyed opinion distributions are matched with a high level of accuracy in a specific region in the parameter space, indicating an equal impact of social influence and external noise. More importantly, the estimated strength of biased processing given the macro data is compatible with those values that achieve high likelihood at the micro level. The main contribution of the paper is hence to show that the extended argument-based model provides a solid bridge from the micro processes of argument-induced attitude change to macro level opinion distributions. Beyond that, we review the development of argument-based models and present a new method for the automated classification of model outcomes.
Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics such as the likelihood and average time of events (predictions). Here we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a data set of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.
Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.
The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.