In this paper, we conduct an empirical evaluation of Temporal Graph Benchmark (TGB) by extending our Dynamic Graph Library (DyGLib) to TGB. Compared with TGB, we include eleven popular dynamic graph learning methods for more exhaustive comparisons. Through the experiments, we find that (1) some issues need to be addressed in the current version of TGB, including mismatched data statistics, inaccurate evaluation metric computation, and so on; (2) different models depict varying performance across various datasets, which is in line with previous observations; (3) the performance of some baselines can be significantly improved over the reported results in TGB when using DyGLib. This work aims to ease the researchers' efforts in evaluating various dynamic graph learning methods on TGB and attempts to offer results that can be directly referenced in the follow-up research. All the used resources in this project are publicly available at //github.com/yule-BUAA/DyGLib_TGB. This work is in progress, and feedback from the community is welcomed for improvements.
This paper presents an empirical investigation of the extent to which spoken Humanoid Embodied Conversational Agents (HECAs) can foster usability in mobile serious game (MSG) applications. The aim of the research is to assess the impact of multiple agents and illusion of humanness on the quality of the interaction. The experiment investigates two styles of agent presentation: an agent of high human-likeness (HECA) and an agent of low human-likeness (text). The purpose of the experiment is to assess whether and how agents of high humanlikeness can evoke the illusion of humanness and affect usability. Agents of high human-likeness were designed by following the ECA design model that is a proposed guide for ECA development. The results of the experiment with 90 participants show that users prefer to interact with the HECAs. The difference between the two versions is statistically significant with a large effect size (d=1.01), with many of the participants justifying their choice by saying that the human-like characteristics of the HECA made the version more appealing. This research provides key information on the potential effect of HECAs on serious games, which can provide insight into the design of future mobile serious games.
In this paper, we present a dataset for the computational study of a number of Modern Greek dialects. It consists of raw text data from four dialects of Modern Greek, Cretan, Pontic, Northern Greek and Cypriot Greek. The dataset is of considerable size, albeit imbalanced, and presents the first attempt to create large scale dialectal resources of this type for Modern Greek dialects. We then use the dataset to perform dialect idefntification. We experiment with traditional ML algorithms, as well as simple DL architectures. The results show very good performance on the task, potentially revealing that the dialects in question have distinct enough characteristics allowing even simple ML models to perform well on the task. Error analysis is performed for the top performing algorithms showing that in a number of cases the errors are due to insufficient dataset cleaning.
This paper presents a novel semantic representation, WISeR, that overcomes challenges for Abstract Meaning Representation (AMR). Despite its strengths, AMR is not easily applied to languages or domains without predefined semantic frames, and its use of numbered arguments results in semantic role labels, which are not directly interpretable and are semantically overloaded for parsers. We examine the numbered arguments of predicates in AMR and convert them to thematic roles that do not require reference to semantic frames. We create a new corpus of 1K English dialogue sentences annotated in both WISeR and AMR. WISeR shows stronger inter-annotator agreement for beginner and experienced annotators, with beginners becoming proficient in WISeR annotation more quickly. Finally, we train a state-of-the-art parser on the AMR 3.0 corpus and a WISeR corpus converted from AMR 3.0. The parser is evaluated on these corpora and our dialogue corpus. The WISeR model exhibits higher accuracy than its AMR counterpart across the board, demonstrating that WISeR is easier for parsers to learn.
In this article, we present a new Nested Cross Approximation (NNCA) for constructing H2 matrices. It differs from the existing NCAs~\cite{bebendorf2012constructing, zhao2019fast} in the technique of choosing pivots, a key part of the approximation. Our technique of choosing pivots is purely algebraic and involves only a single tree traversal. We demonstrate its applicability by developing a fast H2 matrix-vector product, that uses NNCA for the appropriate low-rank approximations. We illustrate the timing profiles and the accuracy of NNCA based H2 matrix-vector product. We also provide a comparison of NNCA based H2 matrix-vector product with the existing NCA based H2 matrix-vector products. A key observation is that NNCA performs better than the existing NCAs. In addition, using the NNCA based H2 matrix-vector product, we accelerate i) solving an integral equation in 3D and ii) Support Vector Machine (SVM). In the spirit of reproducible computational science, the implementation of the algorithm developed in this article is made available at \url{//github.com/SAFRAN-LAB/NNCA}.
In this paper, we present first-ever optimized hardware implementation of a state-of-the-art neuromorphic approach Histogram of Averaged Time Surfaces (HATS) algorithm to event-based object classification in FPGA for asynchronous time-based image sensors (ATIS). Our Implementation achieves latency of 3.3 ms for the N-CARS dataset samples and is capable of processing 2.94 Mevts/s. Speed-up is achieved by using parallelism in the design and multiple Processing Elements can be added. As development platform, Zynq-7000 SoC from Xilinx is used. The tradeoff between Average Absolute Error and Resource Utilization for fixed precision implementation is analyzed and presented. The proposed FPGA implementation is $\sim$ 32 x power efficient compared to software implementation.
This paper presents a novel unifying framework of bilinear LSTMs that can represent and utilize the nonlinear interaction of the input features present in sequence datasets for achieving superior performance over a linear LSTM and yet not incur more parameters to be learned. To realize this, our unifying framework allows the expressivity of the linear vs. bilinear terms to be balanced by correspondingly trading off between the hidden state vector size vs. approximation quality of the weight matrix in the bilinear term so as to optimize the performance of our bilinear LSTM, while not incurring more parameters to be learned. We empirically evaluate the performance of our bilinear LSTM in several language-based sequence learning tasks to demonstrate its general applicability.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.