亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Changing clinical algorithms to remove race adjustment has been proposed and implemented for multiple health conditions. Removing race adjustment from estimated glomerular filtration rate (eGFR) equations may reduce disparities in chronic kidney disease (CKD), but has not been studied in clinical practice after implementation. Here, we assessed whether implementing an eGFR equation (CKD-EPI 2021) without adjustment for Black or African American race modified quarterly rates of nephrology referrals and visits within a single healthcare system, Stanford Health Care (SHC). Our cohort study analyzed 547,194 adult patients aged 21 and older who had at least one recorded serum creatinine or serum cystatin C between January 1, 2019 and September 1, 2023. During the study period, implementation of CKD-EPI 2021 did not modify rates of quarterly nephrology referrals in those documented as Black or African American or in the overall cohort. After adjusting for capacity at SHC nephrology clinics, estimated rates of nephrology referrals and visits with CKD-EPI 2021 were 34 (95% CI 29, 39) and 188 (175, 201) per 10,000 patients documented as Black or African American. If race adjustment had not been removed, estimated rates were nearly identical: 38 (95% CI: 28, 53) and 189 (165, 218) per 10,000 patients. Changes to the eGFR equation are likely insufficient to achieve health equity in CKD care decision-making as many other structural inequities remain.

相關內容

Compressing high-capability Large Language Models (LLMs) has emerged as a favored strategy for resource-efficient inferences. While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected. This study conducts the first, thorough evaluation of three (3) leading LLMs using five (5) SoTA compression techniques across eight (8) trustworthiness dimensions. Our experiments highlight the intricate interplay between compression and trustworthiness, revealing some interesting patterns. We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously. For instance, a 4-bit quantized model retains the trustworthiness of its original counterpart, but model pruning significantly degrades trustworthiness, even at 50% sparsity. Moreover, employing quantization within a moderate bit range could unexpectedly improve certain trustworthiness dimensions such as ethics and fairness. Conversely, extreme quantization to very low bit levels (3 bits) tends to reduce trustworthiness significantly. This increased risk cannot be uncovered by looking at benign performance alone, in turn, mandating comprehensive trustworthiness evaluation in practice. These findings culminate in practical recommendations for simultaneously achieving high utility, efficiency, and trustworthiness in LLMs. Code and models are available at //decoding-comp-trust.github.io.

In the face of uncertainty, the ability to *seek information* is of fundamental importance. In many practical applications, such as medical diagnosis and troubleshooting, the information needed to solve the task is not initially given and has to be actively sought by asking follow-up questions (for example, a doctor asking a patient for more details about their symptoms). In this work, we introduce Uncertainty of Thoughts (UoT), an algorithm to augment large language models with the ability to actively seek information by asking effective questions. UoT combines 1) an *uncertainty-aware simulation approach* which enables the model to simulate possible future scenarios and how likely they are to occur, 2) *uncertainty-based rewards* motivated by information gain which incentivizes the model to seek information, and 3) a *reward propagation scheme* to select the optimal question to ask in a way that maximizes the expected reward. In experiments on medical diagnosis, troubleshooting, and the `20 Questions` game, UoT achieves an average performance improvement of 38.1% in the rate of successful task completion across multiple LLMs compared with direct prompting and also improves efficiency (i.e., the number of questions needed to complete the task). Our code has been released [here](//github.com/zhiyuanhubj/UoT)

Communication is a fundamental aspect of human society, facilitating the exchange of information and beliefs among people. Despite the advancements in large language models (LLMs), recent agents built with these often neglect the control over discussion tactics, which are essential in communication scenarios and games. As a variant of the famous communication game Werewolf, One Night Ultimate Werewolf (ONUW) requires players to develop strategic discussion policies due to the potential role changes that increase the uncertainty and complexity of the game. In this work, we first present the existence of the Perfect Bayesian Equilibria (PBEs) in two scenarios of the ONUW game: one with discussion and one without. The results showcase that the discussion greatly changes players' utilities by affecting their beliefs, emphasizing the significance of discussion tactics. Based on the insights obtained from the analyses, we propose an RL-instructed language agent framework, where a discussion policy trained by reinforcement learning (RL) is employed to determine appropriate discussion tactics to adopt. Our experimental results on several ONUW game settings demonstrate the effectiveness and generalizability of our proposed framework.

Backdoor attacks on deep learning represent a recent threat that has gained significant attention in the research community. Backdoor defenses are mainly based on backdoor inversion, which has been shown to be generic, model-agnostic, and applicable to practical threat scenarios. State-of-the-art backdoor inversion recovers a mask in the feature space to locate prominent backdoor features, where benign and backdoor features can be disentangled. However, it suffers from high computational overhead, and we also find that it overly relies on prominent backdoor features that are highly distinguishable from benign features. To tackle these shortcomings, this paper improves backdoor feature inversion for backdoor detection by incorporating extra neuron activation information. In particular, we adversarially increase the loss of backdoored models with respect to weights to activate the backdoor effect, based on which we can easily differentiate backdoored and clean models. Experimental results demonstrate our defense, BAN, is 1.37$\times$ (on CIFAR-10) and 5.11$\times$ (on ImageNet200) more efficient with 9.99% higher detect success rate than the state-of-the-art defense BTI-DBF. Our code and trained models are publicly available.\url{//anonymous.4open.science/r/ban-4B32}

Experimental materials science is experiencing significant growth due to automated experimentation and AI techniques. Integrated autonomous platforms are emerging, combining generative models, robotics, simulations, and automated systems for material synthesis. However, two major challenges remain: democratizing access to these technologies and creating accessible infrastructure for under-resourced scientists. This paper introduces the Quantum Data Hub (QDH), a community-accessible research infrastructure aimed at researchers working with quantum materials. QDH integrates with the National Data Platform, adhering to FAIR principles while proposing additional UNIT principles for usability, navigability, interpretability, and timeliness. The QDH facilitates collaboration and extensibility, allowing seamless integration of new researchers, instruments, and data into the system.

In applied statistics and machine learning, the "gold standards" used for training are often biased and almost always noisy. Dawid and Skene's justifiably popular crowdsourcing model adjusts for rater (coder, annotator) sensitivity and specificity, but fails to capture distributional properties of rating data gathered for training, which in turn biases training. In this study, we introduce a general purpose measurement-error model with which we can infer consensus categories by adding item-level effects for difficulty, discriminativeness, and guessability. We further show how to constrain the bimodal posterior of these models to avoid (or if necessary, allow) adversarial raters. We validate our model's goodness of fit with posterior predictive checks, the Bayesian analogue of $\chi^2$ tests. Dawid and Skene's model is rejected by goodness of fit tests, whereas our new model, which adjusts for item heterogeneity, is not rejected. We illustrate our new model with two well-studied data sets, binary rating data for caries in dental X-rays and implication in natural language.

Autonomous systems are soon to be ubiquitous, from manufacturing autonomy to agricultural field robots, and from health care assistants to the entertainment industry. The majority of these systems are developed with modular sub-components for decision-making, planning, and control that may be hand-engineered or learning-based. While these existing approaches have been shown to perform well under the situations they were specifically designed for, they can perform especially poorly in rare, out-of-distribution scenarios that will undoubtedly arise at test-time. The rise of foundation models trained on multiple tasks with impressively large datasets from a variety of fields has led researchers to believe that these models may provide common sense reasoning that existing planners are missing. Researchers posit that this common sense reasoning will bridge the gap between algorithm development and deployment to out-of-distribution tasks, like how humans adapt to unexpected scenarios. Large language models have already penetrated the robotics and autonomous systems domains as researchers are scrambling to showcase their potential use cases in deployment. While this application direction is very promising empirically, foundation models are known to hallucinate and generate decisions that may sound reasonable, but are in fact poor. We argue there is a need to step back and simultaneously design systems that can quantify the certainty of a model's decision, and detect when it may be hallucinating. In this work, we discuss the current use cases of foundation models for decision-making tasks, provide a general definition for hallucinations with examples, discuss existing approaches to hallucination detection and mitigation with a focus on decision problems, and explore areas for further research in this exciting field.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司